A citizen science toolkit to collect human perceptions of urban environments using open street view images

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:arXiv.org (Nov 4, 2024), p. n/a
Egile nagusia: Danish, Matthew
Beste egile batzuk: Labib, S M, Ricker, Britta, Helbich, Marco
Argitaratua:
Cornell University Library, arXiv.org
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full text outside of ProQuest
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 2937131260
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2937131260 
045 0 |b d20241104 
100 1 |a Danish, Matthew 
245 1 |a A citizen science toolkit to collect human perceptions of urban environments using open street view images 
260 |b Cornell University Library, arXiv.org  |c Nov 4, 2024 
513 |a Working Paper 
520 3 |a Street View Imagery (SVI) is a valuable data source for studies (e.g., environmental assessments, green space identification or land cover classification). While commercial SVI is available, such providers commonly restrict copying or reuse in ways necessary for research. Open SVI datasets are readily available from less restrictive sources, such as Mapillary, but due to the heterogeneity of the images, these require substantial preprocessing, filtering, and careful quality checks. We present an efficient method for automated downloading, processing, cropping, and filtering open SVI, to be used in a survey of human perceptions of the streets portrayed in these images. We demonstrate our open-source reusable SVI preparation and smartphone-friendly perception-survey software with Amsterdam (Netherlands) as the case study. Using a citizen science approach, we collected from 331 people 22,637 ratings about their perceptions for various criteria. We have published our software in a public repository for future re-use and reproducibility. 
653 |a Images 
653 |a Urban environments 
653 |a Copying 
653 |a Streets 
653 |a Land cover 
653 |a Filtration 
653 |a Software 
653 |a Heterogeneity 
700 1 |a Labib, S M 
700 1 |a Ricker, Britta 
700 1 |a Helbich, Marco 
773 0 |t arXiv.org  |g (Nov 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2937131260/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2403.00174