Deep Configuration Performance Learning: A Systematic Survey and Taxonomy

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Nov 3, 2024), p. n/a
Autor principal: Gong, Jingzhi
Otros Autores: Chen, Tao
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2941128460
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2941128460 
045 0 |b d20241103 
100 1 |a Gong, Jingzhi 
245 1 |a Deep Configuration Performance Learning: A Systematic Survey and Taxonomy 
260 |b Cornell University Library, arXiv.org  |c Nov 3, 2024 
513 |a Working Paper 
520 3 |a Performance is arguably the most crucial attribute that reflects the quality of a configurable software system. However, given the increasing scale and complexity of modern software, modeling and predicting how various configurations can impact performance becomes one of the major challenges in software maintenance. As such, performance is often modeled without having a thorough knowledge of the software system, but relying mainly on data, which fits precisely with the purpose of deep learning. In this paper, we conduct a comprehensive review exclusively on the topic of deep learning for performance learning of configurable software, covering 1,206 searched papers spanning six indexing services, based on which 99 primary papers were extracted and analyzed. Our results outline key statistics, taxonomy, strengths, weaknesses, and optimal usage scenarios for techniques related to the preparation of configuration data, the construction of deep learning performance models, the evaluation of these models, and their utilization in various software configuration-related tasks.We also identify the good practices and potentially problematic phenomena from the studies surveyed, together with a comprehensive summary of actionable suggestions and insights into future opportunities within the field. To promote open science, all the raw results of this survey can be accessed at our repository: https://github.com/ideas-labo/DCPL-SLR. 
653 |a Taxonomy 
653 |a Software 
653 |a Deep learning 
653 |a Configuration management 
653 |a Configurable programs 
653 |a Indexing services 
700 1 |a Chen, Tao 
773 0 |t arXiv.org  |g (Nov 3, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2941128460/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2403.03322