An adaptive neuro fuzzy methodology for the diagnosis of prenatal hypoplastic left heart syndrome from ultrasound images

Guardat en:
Dades bibliogràfiques
Publicat a:Multimedia Tools and Applications vol. 83, no. 10 (Mar 2024), p. 30755
Autor principal: Kavitha, D.
Altres autors: Geetha, S., Geetha, R.
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2941425638
003 UK-CbPIL
022 |a 1380-7501 
022 |a 1573-7721 
024 7 |a 10.1007/s11042-023-16682-2  |2 doi 
035 |a 2941425638 
045 2 |b d20240301  |b d20240331 
084 |a 108528  |2 nlm 
100 1 |a Kavitha, D.  |u CMR Institute of Technology, Department of Electronics and Communication Engineering, Bangalore, India (GRID:grid.444321.4) (ISNI:0000 0004 0501 2828) 
245 1 |a An adaptive neuro fuzzy methodology for the diagnosis of prenatal hypoplastic left heart syndrome from ultrasound images 
260 |b Springer Nature B.V.  |c Mar 2024 
513 |a Journal Article 
520 3 |a Congenital heart defect (CHD) is one of the most serious congenital deformities in a fetus. About 31% to 55% of CHDs are the primary cause that leads to life-threatening problem among neonates, hence sonographers emphasize the importance of prenatal CHD screening. Among 18 types of CHDs, the asymmetric appearance of the heart seems to be a challenging part. Hypoplastic left heart syndrome (HLHS) is a critical and rare CHD, with an underdeveloped left heart chamber of the fetus. This prenatal CHD can be diagnosed between 17 to 21 weeks of gestation period. Though ultrasound provides a good diagnostic result, prenatal diagnosis is still a challenging area due to its speckle noise and irregular appearance of the heart chambers. In this context, the basic step is to appropriately select the pre-processing algorithm, one such algorithm is the Fuzzy based maximum likelihood estimation technique (FMLET). Right ventricle left ventricle ratio (RVLVR) and cardiac thoracic ratio (CTR) are the two important features required for manual diagnosis of the ultrasound images. Hence, morphological operations such as open, close, thinning and thickening helps to extract the diagnostically important features inherent in the images. Finally, the computer aided decision support (CADS) system is designed with pre-processing module, morphological module and adaptive neuro fuzzy (ANFC) classifier module. ANFC is investigated as the good classifiers to help the experts in terms of self-learning with higher diagnostic rate. The proposed CADS proven with 91% of diagnostic accuracy and the standardized area under the ROC curve obtained was 0.9137. 
653 |a Fetuses 
653 |a Decision support systems 
653 |a Computer aided decision processes 
653 |a Medical imaging 
653 |a Classifiers 
653 |a Diagnosis 
653 |a Algorithms 
653 |a Maximum likelihood estimation 
653 |a Diagnostic systems 
653 |a Computer aided design--CAD 
653 |a Modules 
653 |a Heart 
653 |a Morphology 
653 |a Ultrasonic imaging 
700 1 |a Geetha, S.  |u VIT University Chennai, School of Computer Science and Engineering, Chennai, India (GRID:grid.412813.d) (ISNI:0000 0001 0687 4946) 
700 1 |a Geetha, R.  |u Saveetha University, Department of Biomedical Engineering, Saveetha School of Engineering, Chennai, India (GRID:grid.412431.1) (ISNI:0000 0004 0444 045X) 
773 0 |t Multimedia Tools and Applications  |g vol. 83, no. 10 (Mar 2024), p. 30755 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2941425638/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2941425638/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch