Investigation and Validation of a Shape Memory Alloy Material Model Using Interactive Fibre Rubber Composites

Spremljeno u:
Bibliografski detalji
Izdano u:Materials vol. 17, no. 5 (2024), p. 1163
Glavni autor: Achyuth Ram Annadata
Daljnji autori: Acevedo-Velazquez, Aline Iobana, Woodworth, Lucas A, Gereke, Thomas, Kaliske, Michael, Röbenack, Klaus, Cherif, Chokri
Izdano:
MDPI AG
Teme:
Online pristup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 2955906458
003 UK-CbPIL
022 |a 1996-1944 
024 7 |a 10.3390/ma17051163  |2 doi 
035 |a 2955906458 
045 2 |b d20240101  |b d20241231 
084 |a 231532  |2 nlm 
100 1 |a Achyuth Ram Annadata  |u Institute of Textile Machinery and High Performance Material Technology, TU Dresden, 01062 Dresden, Germany; <email>thomas.gereke@tu-dresden.de</email> (T.G.); <email>chokri.cherif@tu-dresden.de</email> (C.C.) 
245 1 |a Investigation and Validation of a Shape Memory Alloy Material Model Using Interactive Fibre Rubber Composites 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a The growing demand for intelligent systems with improved human-machine interactions has created an opportunity to develop adaptive bending structures. Interactive fibre rubber composites (IFRCs) are created using smart materials as actuators to obtain any desired application using fibre-reinforced elastomer. Shape memory alloys (SMAs) play a prominent role in the smart material family and are being used for various applications. Their diverse applications are intended for commercial and research purposes, and the need to model and analyse these application-based structures to achieve their maximum potential is of utmost importance. Many material models have been developed to characterise the behaviour of SMAs. However, there are very few commercially developed finite element models that can predict their behaviour. One such model is the Souza and Auricchio (SA) SMA material model incorporated in ANSYS, with the ability to solve for both shape memory effect (SME) and superelasticity (SE) but with a limitation of considering pre-stretch for irregularly shaped geometries. In order to address this gap, Woodworth and Kaliske (WK) developed a phenomenological constitutive SMA material model, offering the flexibility to apply pre-stretches for SMA wires with irregular profiles. This study investigates the WK SMA material model, utilizing deformations observed in IFRC structures as a reference and validating them against simulated models using the SA SMA material model. This validation process is crucial in ensuring the reliability and accuracy of the WK model, thus enhancing confidence in its application for predictive analysis in SMA-based systems. 
653 |a Aircraft 
653 |a Fiber reinforced materials 
653 |a Finite element method 
653 |a Design optimization 
653 |a Simulation 
653 |a Heat treating 
653 |a Shape effects 
653 |a Titanium alloys 
653 |a Silicones 
653 |a Wire 
653 |a Temperature 
653 |a Superelasticity 
653 |a Rubber 
653 |a Smart materials 
653 |a Robots 
653 |a Mathematical models 
653 |a Shape memory alloys 
653 |a Actuators 
653 |a Composite materials 
653 |a Efficiency 
653 |a Smart structures 
653 |a Robotics 
653 |a Elastomers 
700 1 |a Acevedo-Velazquez, Aline Iobana  |u Institute of Control Theory, Faculty of Electrical and Computer Engineering, TU Dresden, 01062 Dresden, Germany; <email>aline_iobana.acevedo_velazquez@tu-dresden.de</email> (A.I.A.-V.); <email>klaus.roebenack@tu-dresden.de</email> (K.R.) 
700 1 |a Woodworth, Lucas A  |u Institute for Structural Analysis, TU Dresden, 01062 Dresden, Germany; <email>lucas.woodworth@tu-dresden.de</email> (L.A.W.); <email>michael.kaliske@tu-dresden.de</email> (M.K.) 
700 1 |a Gereke, Thomas  |u Institute of Textile Machinery and High Performance Material Technology, TU Dresden, 01062 Dresden, Germany; <email>thomas.gereke@tu-dresden.de</email> (T.G.); <email>chokri.cherif@tu-dresden.de</email> (C.C.) 
700 1 |a Kaliske, Michael  |u Institute for Structural Analysis, TU Dresden, 01062 Dresden, Germany; <email>lucas.woodworth@tu-dresden.de</email> (L.A.W.); <email>michael.kaliske@tu-dresden.de</email> (M.K.) 
700 1 |a Röbenack, Klaus  |u Institute of Control Theory, Faculty of Electrical and Computer Engineering, TU Dresden, 01062 Dresden, Germany; <email>aline_iobana.acevedo_velazquez@tu-dresden.de</email> (A.I.A.-V.); <email>klaus.roebenack@tu-dresden.de</email> (K.R.) 
700 1 |a Cherif, Chokri  |u Institute of Textile Machinery and High Performance Material Technology, TU Dresden, 01062 Dresden, Germany; <email>thomas.gereke@tu-dresden.de</email> (T.G.); <email>chokri.cherif@tu-dresden.de</email> (C.C.) 
773 0 |t Materials  |g vol. 17, no. 5 (2024), p. 1163 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2955906458/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2955906458/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2955906458/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch