A physics-informed deep learning liquid crystal camera with data-driven diffractive guidance

Gardado en:
Detalles Bibliográficos
Publicado en:Communications Engineering vol. 3, no. 1 (Dec 2024), p. 46
Autor Principal: Shi, Jiashuo
Outros autores: Liu, Taige, Zhou, Liang, Yan, Pei, Wang, Zhe, Zhang, Xinyu
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 2956515929
003 UK-CbPIL
022 |a 2731-3395 
024 7 |a 10.1038/s44172-024-00191-7  |2 doi 
035 |a 2956515929 
045 2 |b d20241201  |b d20241231 
100 1 |a Shi, Jiashuo  |u Huazhong University of Science and Technology, National Key Laboratory of Science and Technology on Multi-spectral Information Processing, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223); Huazhong University of Science and Technology, School of Artificial Intelligence and Automation, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
245 1 |a A physics-informed deep learning liquid crystal camera with data-driven diffractive guidance 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a Whether in the realms of computer vision, robotics, or environmental monitoring, the ability to monitor and follow specific targets amidst intricate surroundings is essential for numerous applications. However, achieving rapid and efficient target tracking remains a challenge. Here we propose an optical implementation for rapid tracking with negligible digital post-processing, leveraging an all-optical information processing. This work combines a diffractive-based optical nerual network with a layered liquid crystal electrical addressing architecture, synergizing the parallel processing capabilities inherent in light propagation with liquid crystal dynamic adaptation mechanism. Through a one-time effort training, the trained network enable accurate prediction of the desired arrangement of liquid crystal molecules as confirmed through numerical blind testing. Then we establish an experimental camera architecture that synergistically combines an electrically-tuned functioned liquid crystal layer with materialized optical neural network. With integrating the architecture into optical imaging path of a detector plane, this optical computing camera offers a data-driven diffractive guidance, enabling the identification of target within complex backgrounds, highlighting its high-level vision task implementation and problem-solving capabilities.Jiashuo Shi and colleagues build an integrated camera capable of tracking objects of interest. They use optical computing to arrange molecules in the liquid crystal mask for enhanced distinction between the object and background. 
653 |a Robotics 
653 |a Parallel processing 
653 |a Cameras 
653 |a Computation 
653 |a Data processing 
653 |a Deep learning 
653 |a Datasets 
653 |a Back propagation 
653 |a Neural networks 
653 |a Electrodes 
653 |a Liquid crystals 
653 |a Environmental monitoring 
653 |a Electric fields 
653 |a Target recognition 
653 |a Optical data processing 
653 |a Computer vision 
653 |a Algorithms 
653 |a Tracking 
700 1 |a Liu, Taige  |u Huazhong University of Science and Technology, National Key Laboratory of Science and Technology on Multi-spectral Information Processing, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223); Huazhong University of Science and Technology, School of Artificial Intelligence and Automation, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Zhou, Liang  |u Huazhong University of Science and Technology, National Key Laboratory of Science and Technology on Multi-spectral Information Processing, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223); Huazhong University of Science and Technology, School of Artificial Intelligence and Automation, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Yan, Pei  |u Huazhong University of Science and Technology, National Key Laboratory of Science and Technology on Multi-spectral Information Processing, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223); Huazhong University of Science and Technology, School of Artificial Intelligence and Automation, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223); Nanyang Technological University, School of Computer Science and Engineering, Singapore, Singapore (GRID:grid.59025.3b) (ISNI:0000 0001 2224 0361) 
700 1 |a Wang, Zhe  |u Huazhong University of Science and Technology, National Key Laboratory of Science and Technology on Multi-spectral Information Processing, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223); Huazhong University of Science and Technology, School of Artificial Intelligence and Automation, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Zhang, Xinyu  |u Huazhong University of Science and Technology, National Key Laboratory of Science and Technology on Multi-spectral Information Processing, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223); Huazhong University of Science and Technology, School of Artificial Intelligence and Automation, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
773 0 |t Communications Engineering  |g vol. 3, no. 1 (Dec 2024), p. 46 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2956515929/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2956515929/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2956515929/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch