Merino: Entropy-driven Design for Generative Language Models on IoT Devices
محفوظ في:
| الحاوية / القاعدة: | arXiv.org (Dec 10, 2024), p. n/a |
|---|---|
| المؤلف الرئيسي: | |
| مؤلفون آخرون: | , , , |
| منشور في: |
Cornell University Library, arXiv.org
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | Citation/Abstract Full text outside of ProQuest |
| الوسوم: |
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| مستخلص: | Generative Large Language Models (LLMs) stand as a revolutionary advancement in the modern era of artificial intelligence (AI). However, scaling down LLMs for resource-constrained hardware, such as Internet-of-Things (IoT) devices requires non-trivial efforts and domain knowledge. In this paper, we propose a novel information-entropy framework for designing mobile-friendly generative language models. The whole design procedure involves solving a mathematical programming (MP) problem, which can be done on the CPU within minutes, making it nearly zero-cost. We evaluate our designed models, termed MeRino, across fourteen NLP downstream tasks, showing their competitive performance against the state-of-the-art autoregressive transformer models under the mobile setting. Notably, MeRino achieves similar or better performance on both language modeling and zero-shot learning tasks, compared to the 350M parameter OPT while being 4.9x faster on NVIDIA Jetson Nano with 5.5x reduction in model size. |
|---|---|
| تدمد: | 2331-8422 |
| المصدر: | Engineering Database |