Quantile balancing inverse probability weighting for non-probability samples

Сохранить в:
Библиографические подробности
Опубликовано в::arXiv.org (Dec 20, 2024), p. n/a
Главный автор: Beręsewicz, Maciej
Другие авторы: Szymkowiak, Marcin, Chlebicki, Piotr
Опубликовано:
Cornell University Library, arXiv.org
Предметы:
Online-ссылка:Citation/Abstract
Full text outside of ProQuest
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 2962927366
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2962927366 
045 0 |b d20241220 
100 1 |a Beręsewicz, Maciej 
245 1 |a Quantile balancing inverse probability weighting for non-probability samples 
260 |b Cornell University Library, arXiv.org  |c Dec 20, 2024 
513 |a Working Paper 
520 3 |a The use of non-probability data sources for statistical purposes has become increasingly popular in recent years, also in official statistics. However, statistical inference based on non-probability samples is made more difficult by nature of them being biased and not representative of the target population. In this paper we propose quantile balancing inverse probability weighting estimator (QBIPW) for non-probability samples. We use the idea of Harms and Duchesne (2006) which allows to include quantile information in the estimation process so known totals and distribution for auxiliary variables are being reproduced. We discuss the estimation of the QBIPW probabilities and its variance. Our simulation study has demonstrated that the proposed estimators are robust against model mis-specification and, as a result, help to reduce bias and mean squared error. Finally, we applied the proposed methods to estimate the share of vacancies aimed at Ukrainian workers in Poland using an integrated set of administrative and survey data about job vacancies. 
653 |a Samples 
653 |a Calibration 
653 |a Probability 
653 |a Estimators 
653 |a Statistical analysis 
653 |a Confidence intervals 
653 |a Statistical inference 
653 |a Robustness 
653 |a Quantiles 
700 1 |a Szymkowiak, Marcin 
700 1 |a Chlebicki, Piotr 
773 0 |t arXiv.org  |g (Dec 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2962927366/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2403.09726