Boundary parameter matching for isogeometric analysis using Schwarz-Christoffel mapping

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Mar 15, 2024), p. n/a
Autor principal: Ye Ji
Otros Autores: Möller, Matthias, Yu, Yingying, Zhu, Chungang
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2962934118
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2962934118 
045 0 |b d20240315 
100 1 |a Ye Ji 
245 1 |a Boundary parameter matching for isogeometric analysis using Schwarz-Christoffel mapping 
260 |b Cornell University Library, arXiv.org  |c Mar 15, 2024 
513 |a Working Paper 
520 3 |a Isogeometric analysis has brought a paradigm shift in integrating computational simulations with geometric designs across engineering disciplines. This technique necessitates analysis-suitable parameterization of physical domains to fully harness the synergy between Computer-Aided Design and Computer-Aided Engineering analyses. The existing methods often fix boundary parameters, leading to challenges in elongated geometries such as fluid channels and tubular reactors. This paper presents an innovative solution for the boundary parameter matching problem, specifically designed for analysis-suitable parameterizations. We employ a sophisticated Schwarz-Christoffel mapping technique, which is instrumental in computing boundary correspondences. A refined boundary curve reparameterization process complements this. Our dual-strategy approach maintains the geometric exactness and continuity of input physical domains, overcoming limitations often encountered with the existing reparameterization techniques. By employing our proposed boundary parameter method, we show that even a simple linear interpolation approach can effectively construct a satisfactory analysis-suitable parameterization. Our methodology offers significant improvements over traditional practices, enabling the generation of analysis-suitable and geometrically precise models, which is crucial for ensuring accurate simulation results. Numerical experiments show the capacity of the proposed method to enhance the quality and reliability of isogeometric analysis workflows. 
653 |a Mapping 
653 |a Reliability analysis 
653 |a Design 
653 |a Parameterization 
653 |a Computer aided design--CAD 
653 |a Matching 
653 |a Computer aided engineering--CAE 
653 |a Parameters 
653 |a Interpolation 
700 1 |a Möller, Matthias 
700 1 |a Yu, Yingying 
700 1 |a Zhu, Chungang 
773 0 |t arXiv.org  |g (Mar 15, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2962934118/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2403.10284