Shapley Values-Powered Framework for Fair Reward Split in Content Produced by GenAI

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Mar 27, 2024), p. n/a
Autor principal: Glinsky, Alex
Otros Autores: Sokolsky, Alexey
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:It is evident that, currently, generative models are surpassed in quality by human professionals. However, with the advancements in Artificial Intelligence, this gap will narrow, leading to scenarios where individuals who have dedicated years of their lives to mastering a skill become obsolete due to their high costs, which are inherently linked to the time they require to complete a task -- a task that AI could accomplish in minutes or seconds. To avoid future social upheavals, we must, even now, contemplate how to fairly assess the contributions of such individuals in training generative models and how to compensate them for the reduction or complete loss of their incomes. In this work, we propose a method to structure collaboration between model developers and data providers. To achieve this, we employ Shapley Values to quantify the contribution of artist(s) in an image generated by the Stable Diffusion-v1.5 model and to equitably allocate the reward among them.
ISSN:2331-8422
Fuente:Engineering Database