Efficient All-electron Hybrid Density Functionals for Atomistic Simulations Beyond 10,000 Atoms

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Mar 15, 2024), p. n/a
Hlavní autor: Kokott, Sebastian
Další autoři: Merz, Florian, Yao, Yi, Carbogno, Christian, Rossi, Mariana, Havu, Ville, Rampp, Markus, Scheffler, Matthias, Blum, Volker
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 2962943979
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1063/5.0208103  |2 doi 
035 |a 2962943979 
045 0 |b d20240315 
100 1 |a Kokott, Sebastian 
245 1 |a Efficient All-electron Hybrid Density Functionals for Atomistic Simulations Beyond 10,000 Atoms 
260 |b Cornell University Library, arXiv.org  |c Mar 15, 2024 
513 |a Working Paper 
520 3 |a Hybrid density functional approximations (DFAs) offer compelling accuracy for ab initio electronic-structure simulations of molecules, nanosystems, and bulk materials, addressing some deficiencies of computationally cheaper, frequently used semilocal DFAs. However, the computational bottleneck of hybrid DFAs is the evaluation of the non-local exact exchange contribution, which is the limiting factor for the application of the method for large-scale simulations. In this work, we present a drastically optimized resolution-of-identity-based real-space implementation of the exact exchange evaluation for both non-periodic and periodic boundary conditions in the all-electron code FHI-aims, targeting high-performance CPU compute clusters. The introduction of several new refined Message Passing Interface (MPI) parallelization layers and shared memory arrays according to the MPI-3 standard were the key components of the optimization. We demonstrate significant improvements of memory and performance efficiency, scalability, and workload distribution, extending the reach of hybrid DFAs to simulation sizes beyond ten thousand atoms. As a necessary byproduct of this work, other code parts in FHI-aims have been optimized as well, e.g., the computation of the Hartree potential and the evaluation of the force and stress components. We benchmark the performance and scaling of the hybrid DFA based simulations for a broad range of chemical systems, including hybrid organic-inorganic perovskites, organic crystals and ice crystals with up to 30,576 atoms (101,920 electrons described by 244,608 basis functions). 
653 |a Simulation 
653 |a Message passing 
653 |a Organic crystals 
653 |a Computer memory 
653 |a Molecular structure 
653 |a Ice crystals 
653 |a Basis functions 
653 |a Boundary conditions 
653 |a Workload 
653 |a Electrons 
653 |a Hybrid systems 
653 |a Electronic structure 
653 |a Perovskites 
700 1 |a Merz, Florian 
700 1 |a Yao, Yi 
700 1 |a Carbogno, Christian 
700 1 |a Rossi, Mariana 
700 1 |a Havu, Ville 
700 1 |a Rampp, Markus 
700 1 |a Scheffler, Matthias 
700 1 |a Blum, Volker 
773 0 |t arXiv.org  |g (Mar 15, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2962943979/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2403.10343