Singularity separation Chebyshev collocation method for weakly singular Volterra integral equations of the second kind

Guardat en:
Dades bibliogràfiques
Publicat a:Numerical Algorithms vol. 95, no. 4 (Apr 2024), p. 1829
Autor principal: Wang, Tongke
Altres autors: Lian, Huan, Ji, Lu
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2963004588
003 UK-CbPIL
022 |a 1017-1398 
022 |a 1572-9265 
024 7 |a 10.1007/s11075-023-01629-3  |2 doi 
035 |a 2963004588 
045 2 |b d20240401  |b d20240430 
100 1 |a Wang, Tongke  |u Tianjin Normal University, School of Mathematical Sciences, Tianjin, China (GRID:grid.412735.6) (ISNI:0000 0001 0193 3951) 
245 1 |a Singularity separation Chebyshev collocation method for weakly singular Volterra integral equations of the second kind 
260 |b Springer Nature B.V.  |c Apr 2024 
513 |a Journal Article 
520 3 |a Volterra integral equation of the second kind with weakly singular kernel usually exhibits singular behavior at the origin, which deteriorates the accuracy of standard numerical methods. This paper develops a singularity separation Chebyshev collocation method to solve this kind of Volterra integral equation by splitting the interval into a singular subinterval and a regular one. In the singular subinterval, the general psi-series expansion for the solution about the origin or its Padé approximation is used to approximate the solution. In the regular subinterval, the Chebyshev collocation method is used to discretize the equation. The details of the implementation are also discussed. Specifically, a stable and fast recurrence procedure is derived to evaluate the singular weight integrals involving Chebyshev polynomials analytically. The convergence of the method is proved. We further extend the method to the nonlinear Volterra integral equation by using the Newton method. Three numerical examples are provided to show that the singularity separation Chebyshev collocation method in this paper can effectively solve linear and nonlinear weakly singular Volterra integral equations with high precision. 
653 |a Singularities 
653 |a Series expansion 
653 |a Mathematical analysis 
653 |a Newton methods 
653 |a Integrals 
653 |a Separation 
653 |a Polynomials 
653 |a Collocation methods 
653 |a Chebyshev approximation 
653 |a Approximation 
653 |a Numerical analysis 
653 |a Methods 
653 |a Algebra 
653 |a Integral equations 
653 |a Numerical methods 
653 |a Volterra integral equations 
700 1 |a Lian, Huan  |u Tianjin Normal University, School of Mathematical Sciences, Tianjin, China (GRID:grid.412735.6) (ISNI:0000 0001 0193 3951) 
700 1 |a Ji, Lu  |u Tianjin Normal University, School of Mathematical Sciences, Tianjin, China (GRID:grid.412735.6) (ISNI:0000 0001 0193 3951) 
773 0 |t Numerical Algorithms  |g vol. 95, no. 4 (Apr 2024), p. 1829 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2963004588/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2963004588/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2963004588/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch