FaceXFormer: A Unified Transformer for Facial Analysis

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:arXiv.org (Dec 19, 2024), p. n/a
المؤلف الرئيسي: Narayan, Kartik
مؤلفون آخرون: Vibashan, V S, Chellappa, Rama, Patel, Vishal M
منشور في:
Cornell University Library, arXiv.org
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:In this work, we introduce FaceXFormer, an end-to-end unified transformer model capable of performing nine facial analysis tasks including face parsing, landmark detection, head pose estimation, attribute prediction, and estimation of age, gender, race, expression, and face visibility within a single framework. Conventional methods in face analysis have often relied on task-specific designs and pre-processing techniques, which limit their scalability and integration into a unified architecture. Unlike these conventional methods, FaceXFormer leverages a transformer-based encoder-decoder architecture where each task is treated as a learnable token, enabling the seamless integration and simultaneous processing of multiple tasks within a single framework. Moreover, we propose a novel parameter-efficient decoder, FaceX, which jointly processes face and task tokens, thereby learning generalized and robust face representations across different tasks. We jointly trained FaceXFormer on nine face perception datasets and conducted experiments against specialized and multi-task models in both intra-dataset and cross-dataset evaluations across multiple benchmarks, showcasing state-of-the-art or competitive performance. Further, we performed a comprehensive analysis of different backbones for unified face task processing and evaluated our model "in-the-wild", demonstrating its robustness and generalizability. To the best of our knowledge, this is the first work to propose a single model capable of handling nine facial analysis tasks while maintaining real-time performance at 33.21 FPS.
تدمد:2331-8422
المصدر:Engineering Database