Step-Calibrated Diffusion for Biomedical Optical Image Restoration

Guardado en:
書目詳細資料
發表在:arXiv.org (Dec 17, 2024), p. n/a
主要作者: Lyu, Yiwei
其他作者: Cha, Sung Jik, Cheng, Jiang, Chowdury, Asadur, Hou, Xinhai, Harake, Edward, Kondepudi, Akhil, Freudiger, Christian, Lee, Honglak, Hollon, Todd C
出版:
Cornell University Library, arXiv.org
主題:
在線閱讀:Citation/Abstract
Full text outside of ProQuest
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

MARC

LEADER 00000nab a2200000uu 4500
001 2972951255
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2972951255 
045 0 |b d20241217 
100 1 |a Lyu, Yiwei 
245 1 |a Step-Calibrated Diffusion for Biomedical Optical Image Restoration 
260 |b Cornell University Library, arXiv.org  |c Dec 17, 2024 
513 |a Working Paper 
520 3 |a High-quality, high-resolution medical imaging is essential for clinical care. Raman-based biomedical optical imaging uses non-ionizing infrared radiation to evaluate human tissues in real time and is used for early cancer detection, brain tumor diagnosis, and intraoperative tissue analysis. Unfortunately, optical imaging is vulnerable to image degradation due to laser scattering and absorption, which can result in diagnostic errors and misguided treatment. Restoration of optical images is a challenging computer vision task because the sources of image degradation are multi-factorial, stochastic, and tissue-dependent, preventing a straightforward method to obtain paired low-quality/high-quality data. Here, we present Restorative Step-Calibrated Diffusion (RSCD), an unpaired diffusion-based image restoration method that uses a step calibrator model to dynamically determine the number of steps required to complete the reverse diffusion process for image restoration. RSCD outperforms other widely used unpaired image restoration methods on both image quality and perceptual evaluation metrics for restoring optical images. Medical imaging experts consistently prefer images restored using RSCD in blinded comparison experiments and report minimal to no hallucinations. Finally, we show that RSCD improves performance on downstream clinical imaging tasks, including automated brain tumor diagnosis and deep tissue imaging. Our code is available at https://github.com/MLNeurosurg/restorative_step-calibrated_diffusion. 
653 |a Tumors 
653 |a Human tissues 
653 |a Image resolution 
653 |a Brain cancer 
653 |a Medical imaging 
653 |a Calibration 
653 |a Image degradation 
653 |a Diagnosis 
653 |a Brain 
653 |a Image restoration 
653 |a Computer vision 
653 |a Image quality 
653 |a Infrared imaging 
653 |a Image processing 
700 1 |a Cha, Sung Jik 
700 1 |a Cheng, Jiang 
700 1 |a Chowdury, Asadur 
700 1 |a Hou, Xinhai 
700 1 |a Harake, Edward 
700 1 |a Kondepudi, Akhil 
700 1 |a Freudiger, Christian 
700 1 |a Lee, Honglak 
700 1 |a Hollon, Todd C 
773 0 |t arXiv.org  |g (Dec 17, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2972951255/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2403.13680