Learning the manufacturing capabilities of machining and finishing processes using a deep neural network model

Guardado en:
Bibliografiske detaljer
Udgivet i:Journal of Intelligent Manufacturing vol. 35, no. 4 (Apr 2024), p. 1845
Hovedforfatter: Zhao, Changxuan
Andre forfattere: Melkote, Shreyes N.
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 2984718007
003 UK-CbPIL
022 |a 0956-5515 
022 |a 1572-8145 
024 7 |a 10.1007/s10845-023-02134-z  |2 doi 
035 |a 2984718007 
045 2 |b d20240401  |b d20240430 
084 |a 53474  |2 nlm 
100 1 |a Zhao, Changxuan  |u Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, USA (GRID:grid.213917.f) (ISNI:0000 0001 2097 4943) 
245 1 |a Learning the manufacturing capabilities of machining and finishing processes using a deep neural network model 
260 |b Springer Nature B.V.  |c Apr 2024 
513 |a Journal Article 
520 3 |a In this work, we present a deep neural network model to automatically learn the capabilities of discrete manufacturing processes such as machining and finishing from design and manufacturing data. By concatenating a 3D Convolutional Neural Network (3D CNN) with a simple Multilayer Perceptron (MLP), we show that the model can learn the capabilities of a manufacturing process described in terms of the part features and quality it can generate, and the materials it can process. Specifically, the proposed method takes the part feature geometry, material properties, and quality information contained in a part design as inputs and trains the deep neural network model to predict the manufacturing process label as output. We present an example implementation of the proposed method using a synthesized dataset to illustrate automatic manufacturing process selection. The performance of the proposed model is compared with the performance of interpretable data-driven classification methods such as decision trees and random forests. By comparing the performance with different combinations of input information to be included during training, it is evident that part quality information is necessary for characterizing the capabilities of finishing processes while material information further improves the model’s ability to discriminate between the different process capabilities. The superior prediction accuracy of the proposed deep neural network model demonstrates its potential for use in future data-driven Computer Aided Process Planning (CAPP) systems. 
653 |a Process planning 
653 |a Material properties 
653 |a Multilayer perceptrons 
653 |a Artificial neural networks 
653 |a Machining 
653 |a Neural networks 
653 |a Process selection 
653 |a Finishing 
653 |a Manufacturing 
653 |a Machine learning 
653 |a Computer aided operations 
653 |a Decision trees 
653 |a Manufacturing industry 
653 |a Advanced manufacturing technologies 
653 |a Economic 
653 |a Environmental 
700 1 |a Melkote, Shreyes N.  |u Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, USA (GRID:grid.213917.f) (ISNI:0000 0001 2097 4943) 
773 0 |t Journal of Intelligent Manufacturing  |g vol. 35, no. 4 (Apr 2024), p. 1845 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2984718007/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2984718007/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch