Real-time Neuron Segmentation for Voltage Imaging

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Mar 25, 2024), p. n/a
Hlavní autor: Bando, Yosuke
Další autoři: Pillai, Ramdas, Kajita, Atsushi, Farhan Abdul Hakeem, Quemener, Yves, Hua-an Tseng, Piatkevich, Kiryl D, Linghu, Changyang, Han, Xue, Boyden, Edward S
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 2986647084
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1109/BIBM58861.2023.10385929  |2 doi 
035 |a 2986647084 
045 0 |b d20240325 
100 1 |a Bando, Yosuke 
245 1 |a Real-time Neuron Segmentation for Voltage Imaging 
260 |b Cornell University Library, arXiv.org  |c Mar 25, 2024 
513 |a Working Paper 
520 3 |a In voltage imaging, where the membrane potentials of individual neurons are recorded at from hundreds to thousand frames per second using fluorescence microscopy, data processing presents a challenge. Even a fraction of a minute of recording with a limited image size yields gigabytes of video data consisting of tens of thousands of frames, which can be time-consuming to process. Moreover, millisecond-level short exposures lead to noisy video frames, obscuring neuron footprints especially in deep-brain samples where noisy signals are buried in background fluorescence. To address this challenge, we propose a fast neuron segmentation method able to detect multiple, potentially overlapping, spiking neurons from noisy video frames, and implement a data processing pipeline incorporating the proposed segmentation method along with GPU-accelerated motion correction. By testing on existing datasets as well as on new datasets we introduce, we show that our pipeline extracts neuron footprints that agree well with human annotation even from cluttered datasets, and demonstrate real-time processing of voltage imaging data on a single desktop computer for the first time. 
653 |a Neurons 
653 |a Background noise 
653 |a Datasets 
653 |a Data processing 
653 |a Frames (data processing) 
653 |a Image segmentation 
653 |a Fluorescence 
653 |a Electric potential 
653 |a Voltage 
653 |a Pipelining (computers) 
653 |a Frames per second 
653 |a Video data 
653 |a Annotations 
653 |a Real time 
653 |a Personal computers 
700 1 |a Pillai, Ramdas 
700 1 |a Kajita, Atsushi 
700 1 |a Farhan Abdul Hakeem 
700 1 |a Quemener, Yves 
700 1 |a Hua-an Tseng 
700 1 |a Piatkevich, Kiryl D 
700 1 |a Linghu, Changyang 
700 1 |a Han, Xue 
700 1 |a Boyden, Edward S 
773 0 |t arXiv.org  |g (Mar 25, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2986647084/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2403.16438