Development of an automated method for flood inundation monitoring, flood hazard, and soil erosion susceptibility assessment using machine learning and AHP–MCE techniques

Gardado en:
Detalles Bibliográficos
Publicado en:Geoenvironmental Disasters vol. 11, no. 1 (Dec 2024), p. 14
Autor Principal: Prakash, A. Jaya
Outros autores: Begam, Sazeda, Vilímek, Vít, Mudi, Sujoy, Das, Pulakesh
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 2986800337
003 UK-CbPIL
022 |a 2197-8670 
024 7 |a 10.1186/s40677-024-00275-8  |2 doi 
035 |a 2986800337 
045 2 |b d20241201  |b d20241231 
100 1 |a Prakash, A. Jaya  |u Indian Institute of Technology Kharagpur, Centre for Ocean, River, Atmosphere and Land Sciences, Kharagpur, India (GRID:grid.429017.9) (ISNI:0000 0001 0153 2859) 
245 1 |a Development of an automated method for flood inundation monitoring, flood hazard, and soil erosion susceptibility assessment using machine learning and AHP–MCE techniques 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a BackgroundOperational large-scale flood monitoring using publicly available satellite data is possible with the advent of Sentinel-1 microwave data, which enables near-real-time (at 6-day intervals) flood mapping day and night, even in cloudy monsoon seasons. Automated flood inundation area identification in near-real-time involves advanced geospatial data processing platforms, such as Google Earth Engine and robust methodology (Otsu’s algorithm).ObjectivesThe current study employs Sentinel-1 microwave data for flood extent mapping using machine learning (ML) algorithms in Assam State, India. We generated a flood hazard and soil erosion susceptibility map by combining multi-source data on weather conditions and soil and terrain characteristics. Random Forest (RF), Classification and Regression Tool (CART), and Support Vector Machine (SVM) ML algorithms were applied to generate the flood hazard map. Furthermore, we employed the multicriteria evaluation (MCE) analytical hierarchical process (AHP) for soil erosion susceptibility mapping.SummaryThe highest prediction accuracy was observed for the RF model (overall accuracy [OA] > 82%), followed by the SVM (OA > 82%) and CART (OA > 81%). Over 26% of the study area indicated high flood hazard-prone areas, and approximately 60% showed high and severe potential for soil erosion due to flooding. The automated flood mapping platform is an essential resource for emergency responders and decision-makers, as it helps to guide relief activities by identifying suitable regions and appropriate logistic route planning and improving the accuracy and timeliness of emergency response efforts. Periodic flood inundation maps will help in long-term planning and policymaking, flood management, soil and biodiversity conservation, land degradation, planning sustainable agriculture interventions, crop insurance, and climate resilience studies. 
653 |a Soil erosion 
653 |a Multiple criterion 
653 |a Land conservation 
653 |a Biodiversity 
653 |a Machine learning 
653 |a Decision trees 
653 |a Mapping 
653 |a Spatial data 
653 |a Accuracy 
653 |a Soil conservation 
653 |a Wildlife conservation 
653 |a Route planning 
653 |a Climate change adaptation 
653 |a Algorithms 
653 |a Real time 
653 |a Flood management 
653 |a Analytic hierarchy process 
653 |a Data processing 
653 |a Long-term planning 
653 |a Maps 
653 |a Floods 
653 |a Flood mapping 
653 |a Data analysis 
653 |a Emergency response 
653 |a Flooding 
653 |a Automation 
653 |a Monitoring 
653 |a Emergencies 
653 |a Learning algorithms 
653 |a Sustainable agriculture 
653 |a Model accuracy 
653 |a Support vector machines 
653 |a Weather 
653 |a Climate adaptation 
653 |a Policy and planning 
653 |a Flood hazards 
653 |a Flood control 
653 |a Emergency preparedness 
653 |a Crop insurance 
653 |a Hydrologic data 
653 |a Land degradation 
653 |a First responders 
653 |a Environmental 
700 1 |a Begam, Sazeda  |u University of Nottingham, Department of Civil Engineering, Nottingham, UK (GRID:grid.4563.4) (ISNI:0000 0004 1936 8868) 
700 1 |a Vilímek, Vít  |u Charles University, Prague 2, Czech Republic (GRID:grid.4491.8) (ISNI:0000 0004 1937 116X) 
700 1 |a Mudi, Sujoy  |u BeZero Carbon Ltd, London, UK (GRID:grid.4491.8) 
700 1 |a Das, Pulakesh  |u University of Maine, School of Forest Resources, Orono, USA (GRID:grid.21106.34) (ISNI:0000 0001 2182 0794) 
773 0 |t Geoenvironmental Disasters  |g vol. 11, no. 1 (Dec 2024), p. 14 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2986800337/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2986800337/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch