Survey on Machine Learning Biases and Mitigation Techniques

Guardado en:
Detalles Bibliográficos
Publicado en:Digital vol. 4, no. 1 (2024), p. 1
Autor principal: Siddique, Sunzida
Otros Autores: Haque, Mohd Ariful, Roy, George, Kishor Datta Gupta, Gupta, Debashis, Md Jobair Hossain Faruk
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2998628813
003 UK-CbPIL
022 |a 2673-6470 
024 7 |a 10.3390/digital4010001  |2 doi 
035 |a 2998628813 
045 2 |b d20240101  |b d20241231 
100 1 |a Siddique, Sunzida  |u Department of CSE, Daffodil International University, Dhaka 1215, Bangladesh 
245 1 |a Survey on Machine Learning Biases and Mitigation Techniques 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Machine learning (ML) has become increasingly prevalent in various domains. However, ML algorithms sometimes give unfair outcomes and discrimination against certain groups. Thereby, bias occurs when our results produce a decision that is systematically incorrect. At various phases of the ML pipeline, such as data collection, pre-processing, model selection, and evaluation, these biases appear. Bias reduction methods for ML have been suggested using a variety of techniques. By changing the data or the model itself, adding more fairness constraints, or both, these methods try to lessen bias. The best technique relies on the particular context and application because each technique has advantages and disadvantages. Therefore, in this paper, we present a comprehensive survey of bias mitigation techniques in machine learning (ML) with a focus on in-depth exploration of methods, including adversarial training. We examine the diverse types of bias that can afflict ML systems, elucidate current research trends, and address future challenges. Our discussion encompasses a detailed analysis of pre-processing, in-processing, and post-processing methods, including their respective pros and cons. Moreover, we go beyond qualitative assessments by quantifying the strategies for bias reduction and providing empirical evidence and performance metrics. This paper serves as an invaluable resource for researchers, practitioners, and policymakers seeking to navigate the intricate landscape of bias in ML, offering both a profound understanding of the issue and actionable insights for responsible and effective bias mitigation. 
653 |a Research 
653 |a Machine learning 
653 |a Computer science 
653 |a Artificial intelligence 
653 |a Boolean 
653 |a Decision making 
653 |a Databases 
653 |a Literature reviews 
653 |a Algorithms 
653 |a Ethics 
653 |a Keywords 
653 |a Conference proceedings 
653 |a Systematic review 
653 |a Bias 
700 1 |a Haque, Mohd Ariful  |u Department of Computer and Information Science, Clark Atlanta University, Atlanta, GA 30314, USA<email>rgeorge@cau.edu</email> (R.G.); <email>kgupta@cau.edu</email> (K.D.G.) 
700 1 |a Roy, George  |u Department of Computer and Information Science, Clark Atlanta University, Atlanta, GA 30314, USA<email>rgeorge@cau.edu</email> (R.G.); <email>kgupta@cau.edu</email> (K.D.G.) 
700 1 |a Kishor Datta Gupta  |u Department of Computer and Information Science, Clark Atlanta University, Atlanta, GA 30314, USA<email>rgeorge@cau.edu</email> (R.G.); <email>kgupta@cau.edu</email> (K.D.G.) 
700 1 |a Gupta, Debashis  |u Computer Science, Wake Forest University, Winston-Salem, NC 27109, USA; <email>guptd23@wfu.edu</email> 
700 1 |a Md Jobair Hossain Faruk  |u New York Institute of Technology, Old Westbury, NY 11545, USA; <email>jobair.upsi16@gmail.com</email> 
773 0 |t Digital  |g vol. 4, no. 1 (2024), p. 1 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2998628813/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2998628813/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2998628813/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch