Application of particle swarm optimization to TDOA-based location.

Guardado en:
Detalles Bibliográficos
Publicado en:Yingyong Keji (Applied Science and Technology) vol. 32, no. 10 (Oct. 2005), p. 7-9
Autor principal: Li, Jun-Feng
Otros Autores: Gao, Hong-Yuan, Pang, Wei-Zheng, Tong, Zhi-Yong
Publicado:
Harbin Engineering Universty, 1st Building 145 Nantong Street, Harbin, 150001, China, [mailto:heuyykj@vip.sina.com]
Materias:
Acceso en línea:Citation/Abstract
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The particle swarm optimization for the nonlinear optimization in TDOA-based location is proposed in this paper. By initializing a random particle swarm, updating the velocity and position of particles in accordance with the fitness of particles, the algorithm searches the optimal coordinates through iterative searching. The experimental results show that if the parameters are assumed reasonably, the algorithm is stable and can find the global optimal solution. It has a higher accuracy than other algorithms.
ISSN:1009-671X
Fuente:Advanced Technologies & Aerospace Index