A 0.49–4.34 μW LC-SAR Hybrid ADC with a 10.85-Bit ENOB and 20 KS/s Bandwidth

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 13, no. 6 (2024), p. 1078
Autor principal: Tang, Hai
Otros Autores: Xu, Weilin, Li, Haiou, Wei, Baolin, Wei, Xueming
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2999181068
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics13061078  |2 doi 
035 |a 2999181068 
045 2 |b d20240101  |b d20241231 
084 |a 231458  |2 nlm 
100 1 |a Tang, Hai  |u Key Laboratory of Microelectronic Devices and Integrated Circuits, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Electronic Technology, Guilin 541004, China; <email>1800200730@mails.guet.edu.cn</email> 
245 1 |a A 0.49–4.34 μW LC-SAR Hybrid ADC with a 10.85-Bit ENOB and 20 KS/s Bandwidth 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a This paper presents a level-crossing successive-approximation-register (LC-SAR) hybrid analog-to-digital converter (ADC) that combines an LC ADC with an SAR ADC, which may be used for Internet of Things (IoT) random sparse event scenarios. The sampling frequency of a traditional LC ADC is usually proportional to the maximum instantaneous rate of change of the input signal; therefore, a higher input signal frequency inevitably leads to higher system power consumption. However, the proposed hybrid ADC uses the input level difference between the two moments before and after level-crossing detection, thereby ensuring a higher conversion precision and lower power consumption, even at higher input signal frequencies. Compared with traditional LC ADC or SAR ADC, the proposed hybrid ADC combines the ultralow-power advantage of LC ADC with the high-precision advantage of SAR ADC in converting IoT data with sparse characteristics such as ECG, EEG, and brain potential. The LC-SAR hybrid ADC is designed with a 0.18 μm CMOS process and consumes 4.34 μW at a 1.8 V supply voltage, achieving an SNDR of 67.41 dB and a bandwidth of 20 kHz. The spectrum analysis result was 10.85 ENOB when the input sinusoidal signal was 14.975 kHz. When inputted with an ECG signal, the system power consumption was as low as 0.49 μW. Furthermore, the proposed hybrid ADC obtained a good figure of merit, with FoMw and FoMs reaching 58.8 fJ/conv.steps and 164 dB, respectively. Compared to a conventional uniform sampling ADC, approximately 80% of the power savings and an 8x compression ratio can be achieved in physiological signal acquisition applications. 
653 |a Sparsity 
653 |a Physiology 
653 |a Accuracy 
653 |a Internet of Things 
653 |a Sampling techniques 
653 |a Bandwidths 
653 |a Analog to digital converters 
653 |a Signal processing 
653 |a Spectrum analysis 
653 |a Design 
653 |a Energy efficiency 
653 |a Power consumption 
653 |a Compression ratio 
653 |a Energy consumption 
653 |a Figure of merit 
653 |a Sampling 
700 1 |a Xu, Weilin  |u Key Laboratory of Microelectronic Devices and Integrated Circuits, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Electronic Technology, Guilin 541004, China; <email>1800200730@mails.guet.edu.cn</email> 
700 1 |a Li, Haiou  |u Guangxi Key Laboratory of Precision Navigation Technology and Applications, Guilin University of Electronic Technology, Guilin 541004, China; <email>lihaiou@guet.edu.cn</email> (H.L.); <email>blwei@guet.edu.cn</email> (B.W.); <email>scuweixue@guet.edu.cn</email> (X.W.) 
700 1 |a Wei, Baolin  |u Guangxi Key Laboratory of Precision Navigation Technology and Applications, Guilin University of Electronic Technology, Guilin 541004, China; <email>lihaiou@guet.edu.cn</email> (H.L.); <email>blwei@guet.edu.cn</email> (B.W.); <email>scuweixue@guet.edu.cn</email> (X.W.) 
700 1 |a Wei, Xueming  |u Guangxi Key Laboratory of Precision Navigation Technology and Applications, Guilin University of Electronic Technology, Guilin 541004, China; <email>lihaiou@guet.edu.cn</email> (H.L.); <email>blwei@guet.edu.cn</email> (B.W.); <email>scuweixue@guet.edu.cn</email> (X.W.) 
773 0 |t Electronics  |g vol. 13, no. 6 (2024), p. 1078 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2999181068/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2999181068/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2999181068/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch