Knowledge Graph Representation of Multi-Source Urban Storm Surge Hazard Information Based on Spatio-Temporal Coding and the Hazard Events Ontology Model

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:ISPRS International Journal of Geo-Information vol. 13, no. 3 (2024), p. 88
Egile nagusia: Xinya Lei
Beste egile batzuk: Wang, Yuewei, Han, Wei, Song, Weijing
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3002692608
003 UK-CbPIL
022 |a 2220-9964 
024 7 |a 10.3390/ijgi13030088  |2 doi 
035 |a 3002692608 
045 2 |b d20240101  |b d20241231 
084 |a 231472  |2 nlm 
100 1 |a Xinya Lei  |u The International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; <email>xiaolei@cug.edu.cn</email>; School of Computer Science, China University of Geosciences, Wuhan 430078, China; <email>yuewei.w@cug.edu.cn</email> (Y.W.); <email>weihan@cug.edu.cn</email> (W.H.); Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China 
245 1 |a Knowledge Graph Representation of Multi-Source Urban Storm Surge Hazard Information Based on Spatio-Temporal Coding and the Hazard Events Ontology Model 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Coastal cities are increasingly vulnerable to urban storm surge hazards and the secondary hazards they cause (e.g., coastal flooding). Accurate representation of the spatio-temporal process of hazard event development is essential for effective emergency response. However, current knowledge graph representations face the challenge of integrating multi-source information with various spatial and temporal scales. To address this challenge, we propose a new information model for storm surge hazard events, involving a two-step process. First, a hazard event ontology is designed to model the components and hierarchical relationships of hazard event information. Second, we utilize multi-scale time segment integer coding and geographical coordinate subdividing grid coding to create a spatio-temporal framework, for modeling spatio-temporal features and spatio-temporal relationships. Using the 2018 typhoon Mangkhut storm surge event in Shenzhen as a case study and the hazard event information model as a schema layer, a storm surge event knowledge graph is constructed, demonstrating the integration and formal representation of heterogeneous hazard event information and enabling the fast retrieval of disasters in a given spatial or temporal range. 
653 |a Tidal waves 
653 |a Typhoons 
653 |a Geographical coordinates 
653 |a Hazards 
653 |a Storm surges 
653 |a Ontology 
653 |a Floods 
653 |a Hurricanes 
653 |a Emergency response 
653 |a Emergency preparedness 
653 |a Knowledge representation 
653 |a Coding 
653 |a Weather hazards 
653 |a Case studies 
653 |a Storms 
653 |a Knowledge 
653 |a Graph representations 
653 |a Disasters 
653 |a Web Ontology Language-OWL 
653 |a Temporal variations 
653 |a Information processing 
653 |a Graphical representations 
700 1 |a Wang, Yuewei  |u School of Computer Science, China University of Geosciences, Wuhan 430078, China; <email>yuewei.w@cug.edu.cn</email> (Y.W.); <email>weihan@cug.edu.cn</email> (W.H.); Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China 
700 1 |a Han, Wei  |u School of Computer Science, China University of Geosciences, Wuhan 430078, China; <email>yuewei.w@cug.edu.cn</email> (Y.W.); <email>weihan@cug.edu.cn</email> (W.H.); Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China 
700 1 |a Song, Weijing  |u The International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; <email>xiaolei@cug.edu.cn</email>; School of Computer Science, China University of Geosciences, Wuhan 430078, China; <email>yuewei.w@cug.edu.cn</email> (Y.W.); <email>weihan@cug.edu.cn</email> (W.H.); Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China 
773 0 |t ISPRS International Journal of Geo-Information  |g vol. 13, no. 3 (2024), p. 88 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3002692608/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3002692608/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3002692608/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch