Post-Production Finishing Processes Utilized in 3D Printing Technologies

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Processes vol. 12, no. 3 (2024), p. 595
Egile nagusia: Kantaros, Antreas
Beste egile batzuk: Ganetsos, Theodore, Florian Ion Tiberiu Petrescu, Ungureanu, Liviu Marian, Iulian Sorin Munteanu
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Laburpena:Additive manufacturing (AM) has revolutionized production across industries, yet challenges persist in achieving optimal part quality. This paper studies the enhancement of post-processing techniques to elevate the overall quality of AM-produced components. This study focuses on optimizing various post-processing methodologies to address prevalent issues such as surface roughness, dimensional accuracy, and material properties. Through an extensive review, this article identifies and evaluates a spectrum of post-processing methods, encompassing thermal, chemical, and mechanical treatments. Special attention is given to their effects on different types of additive manufacturing technologies, including selective laser sintering (SLS), fused deposition modeling (FDM), and stereolithography (SLA) and their dedicated raw materials. The findings highlight the significance of tailored post-processing approaches in mitigating inherent defects, optimizing surface finish, and enhancing mechanical properties. Additionally, this study proposes novel post-processing procedures to achieve superior quality while minimizing fabrication time and infrastructure and material costs. The integration of post-processing techniques such as cleaning, surface finishing, heat treatment, support structure removal, surface coating, electropolishing, ultrasonic finishing, and hot isostatic pressing (HIP), as steps directly within the additive manufacturing workflow can immensely contribute toward this direction. The outcomes displayed in this article not only make a valuable contribution to the progression of knowledge regarding post-processing methods but also offer practical implications for manufacturers and researchers who are interested in improving the quality standards of additive manufacturing processes.
ISSN:2227-9717
DOI:10.3390/pr12030595
Baliabidea:Materials Science Database