Blend Scheduling Solutions in Petroleum Refineries towards Automated Decision-Making in Industrial-like Blend-Shops

Zapisane w:
Opis bibliograficzny
Wydane w:Processes vol. 12, no. 3 (2024), p. 561
1. autor: Ahmednooh, Mahmoud
Kolejni autorzy: Menezes, Brenno
Wydane:
MDPI AG
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3003410679
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr12030561  |2 doi 
035 |a 3003410679 
045 2 |b d20240101  |b d20241231 
084 |a 231553  |2 nlm 
100 1 |a Ahmednooh, Mahmoud  |u Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; Production Planning and Scheduling, Um Said Refinery, Qatar Energy, Doha P.O. Box 3212, Qatar; Blend-Shops Company, Qatar Science and Technological Park, Qatar Foundation, Doha P.O. Box 34110, Qatar 
245 1 |a Blend Scheduling Solutions in Petroleum Refineries towards Automated Decision-Making in Industrial-like Blend-Shops 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a A major operation in petroleum refinery plants, blend scheduling management of stocks and their mixtures, known as blend-shops, is aimed at feeding process units (such as distillation columns and catalytic cracking reactors) and production of finished fuels (such as gasoline and diesel). Crude-oil, atmospheric residuum, gasoline, diesel, or any other stream blending and scheduling (or blend scheduling) optimization yields a non-convex mixed-integer nonlinear programming (MINLP) problem to be solved in ad hoc propositions based on decomposition strategies. Alternatively, to avoid such a complex solution, trial-and-error procedures in simulation-based approaches are commonplace. This article discusses solutions for blend scheduling (BS) in petroleum refineries, highlighting optimization against simulation, continuous (simultaneous) and batch (sequential) mixtures, continuous- and discrete-time formulations, and large-scale and complex-scope BS cases. In the latter, ordinary least squares regression (OLSR) using supervised machine learning can be utilized to pre-model blending of streams as linear and nonlinear constraints used in hierarchically decomposed blend scheduling solutions. Approaches that facilitate automated decision-making in handling blend scheduling in petroleum refineries must consider the domains of quantity, logic, and quality variables and constraints, in which the details and challenges for industrial-like blend-shops, from the bulk feed preparation for the petroleum processing until the production of finished fuels, are revealed. 
653 |a Catalytic cracking 
653 |a Hydrocarbons 
653 |a Gasoline 
653 |a Petroleum refineries 
653 |a Optimization techniques 
653 |a Supervised learning 
653 |a Diesel fuels 
653 |a Least squares method 
653 |a Formulations 
653 |a Machine learning 
653 |a Decision making 
653 |a Nonlinear programming 
653 |a Refineries 
653 |a Scheduling 
653 |a Simulation 
653 |a Blending 
653 |a Raw materials 
653 |a Petroleum 
653 |a Batch processes 
653 |a Optimization 
653 |a Distillation 
653 |a Literature reviews 
653 |a Mixed integer 
653 |a Mixtures 
653 |a Kerosene 
653 |a Petroleum refining 
653 |a Inventory 
653 |a Decomposition 
700 1 |a Menezes, Brenno  |u Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; Blend-Shops Company, Qatar Science and Technological Park, Qatar Foundation, Doha P.O. Box 34110, Qatar 
773 0 |t Processes  |g vol. 12, no. 3 (2024), p. 561 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3003410679/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3003410679/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3003410679/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch