Placement Optimization of Virtual Network Functions in a Cloud Computing Environment

Salvato in:
Dettagli Bibliografici
Pubblicato in:Journal of Network and Systems Management vol. 32, no. 2 (Apr 2024), p. 39
Autore principale: Said, Imad Eddine
Altri autori: Sayad, Lamri, Aissani, Djamil
Pubblicazione:
Springer Nature B.V.
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3015024567
003 UK-CbPIL
022 |a 1064-7570 
022 |a 1573-7705 
024 7 |a 10.1007/s10922-024-09812-0  |2 doi 
035 |a 3015024567 
045 2 |b d20240401  |b d20240430 
084 |a 53477  |2 nlm 
100 1 |a Said, Imad Eddine  |u University of Bejaia, Research Unit LaMOS, Faculty of Exact Sciences, Bejaia, Algeria (GRID:grid.442401.7) (ISNI:0000 0001 0690 7656) 
245 1 |a Placement Optimization of Virtual Network Functions in a Cloud Computing Environment 
260 |b Springer Nature B.V.  |c Apr 2024 
513 |a Journal Article 
520 3 |a The use of Network Function Virtualization is constantly increasing in Cloud environments, especially for next-generation networks such as 5G. In this context, the definition of a deployment scheme defining for each Virtual Network Function (VNF) the appropriate server in order to meet the quality of service requirements. This problem is known in the literature as virtual fetwork function placement. However, proper deployment of VNFs on servers can minimize the number of servers used, but may increase service latency. In this article, we propose a multi-objective integer linear programming model to solve the problem of network function placement. The objective is to find the best compromise between minimizing end-to-end total latency for users and reducing the number of servers used, while ensuring that the maximum number of VNFs is connected in the network. Our proposal to solve the NP-hard problem involves developing an algorithm based on the Particle Swarm Optimization metaheuristic to obtain a polynomial time resolution. By performing tests on a simple VNF deployment problem, we validated the relevance of our optimization model and demonstrated the effectiveness of our algorithm. The results obtained showed that our method provides feasible solutions very close to the exact optimal solutions. 
653 |a Network function virtualization 
653 |a Linear programming 
653 |a Particle swarm optimization 
653 |a Placement 
653 |a Servers 
653 |a Integer programming 
653 |a Quality of service architectures 
653 |a Cloud computing 
653 |a Optimization 
653 |a Polynomials 
653 |a Network latency 
653 |a Algorithms 
653 |a Virtual networks 
653 |a Heuristic methods 
653 |a Optimization models 
653 |a Function 
653 |a Latency 
653 |a Function words 
653 |a Deployment 
653 |a Networks 
653 |a Quality of service 
700 1 |a Sayad, Lamri  |u University of M’sila, Laboratory of Informatics and its Applications of M’sila (LIAM), Faculty of Mathematics and Computer Science, M’sila, Algeria (GRID:grid.442401.7) 
700 1 |a Aissani, Djamil  |u University of Bejaia, Research Unit LaMOS, Faculty of Exact Sciences, Bejaia, Algeria (GRID:grid.442401.7) (ISNI:0000 0001 0690 7656) 
773 0 |t Journal of Network and Systems Management  |g vol. 32, no. 2 (Apr 2024), p. 39 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3015024567/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3015024567/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch