Recognition and monitoring of gas leakage using infrared imaging technique with machine learning

Guardado en:
Detalles Bibliográficos
Publicado en:Multimedia Tools and Applications vol. 83, no. 12 (Apr 2024), p. 35413
Autor principal: Shirley, C. P.
Otros Autores: Raja, J Immanuel John, Evangelin Sonia, S. V., Titus, I.
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3030965201
003 UK-CbPIL
022 |a 1380-7501 
022 |a 1573-7721 
024 7 |a 10.1007/s11042-023-17131-w  |2 doi 
035 |a 3030965201 
045 2 |b d20240401  |b d20240430 
084 |a 108528  |2 nlm 
100 1 |a Shirley, C. P.  |u Karunya Institute of Technology and Sciences, Coimbatore, India (GRID:grid.412056.4) (ISNI:0000 0000 9896 4772) 
245 1 |a Recognition and monitoring of gas leakage using infrared imaging technique with machine learning 
260 |b Springer Nature B.V.  |c Apr 2024 
513 |a Journal Article 
520 3 |a Gas leakage in the domestic sector leads to numerous dangerous hazards. The earlier prediction is one of the safety measures to prevent various consequences. The proposed system helps in the earlier detection of gas leakage using artificial intelligence techniques. This involves machine learning with infrared imaging techniques. Machine learning is the process of teaching machines to do tasks automatically by analysing and testing data. The obtained data are processed using image processing techniques. The image processing technique is used to extract information from the images involving various stages such as image enhancement and image analysis. The initial data are obtained in the form of images using infrared imaging techniques. It is the technique that utilizes the infrared portion of the electromagnetic spectrum to obtain the desired images. The obtained images are processed to obtain clear images in the dataset. The data is then tested and taught using machine learning evolving optimization techniques on the data. This helps in the accurate detection of gas leakage. To compare, the individual models' test accuracy ranged from 99.8% (based on Gas Sensor data using Random Forest) with the training accuracy of 99.8%. Experimental results demonstrate its ability to automatically detect and display gas leaks in high quality by establishing a background model, segmenting the gas-leak zone with motion characteristics, and rendering the gas-leak region in colour using grayscale mapping. 
653 |a Model accuracy 
653 |a Data analysis 
653 |a Imaging techniques 
653 |a Machine learning 
653 |a Image analysis 
653 |a Artificial intelligence 
653 |a Image enhancement 
653 |a Optimization techniques 
653 |a Gas sensors 
653 |a Infrared imagery 
653 |a Safety measures 
653 |a Teaching machines 
653 |a Infrared imaging 
653 |a Image processing 
653 |a Leakage 
700 1 |a Raja, J Immanuel John  |u Karunya Institute of Technology and Sciences, Coimbatore, India (GRID:grid.412056.4) (ISNI:0000 0000 9896 4772) 
700 1 |a Evangelin Sonia, S. V.  |u Karunya Institute of Technology and Sciences, Coimbatore, India (GRID:grid.412056.4) (ISNI:0000 0000 9896 4772) 
700 1 |a Titus, I.  |u Karunya Institute of Technology and Sciences, Coimbatore, India (GRID:grid.412056.4) (ISNI:0000 0000 9896 4772) 
773 0 |t Multimedia Tools and Applications  |g vol. 83, no. 12 (Apr 2024), p. 35413 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3030965201/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3030965201/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch