Octopus: On-device language model for function calling of software APIs

Enregistré dans:
Détails bibliographiques
Publié dans:arXiv.org (Apr 2, 2024), p. n/a
Auteur principal: Chen, Wei
Autres auteurs: Li, Zhiyuan, Ma, Mingyuan
Publié:
Cornell University Library, arXiv.org
Sujets:
Accès en ligne:Citation/Abstract
Full text outside of ProQuest
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3031410396
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3031410396 
045 0 |b d20240402 
100 1 |a Chen, Wei 
245 1 |a Octopus: On-device language model for function calling of software APIs 
260 |b Cornell University Library, arXiv.org  |c Apr 2, 2024 
513 |a Working Paper 
520 3 |a In the rapidly evolving domain of artificial intelligence, Large Language Models (LLMs) play a crucial role due to their advanced text processing and generation abilities. This study introduces a new strategy aimed at harnessing on-device LLMs in invoking software APIs. We meticulously compile a dataset derived from software API documentation and apply fine-tuning to LLMs with capacities of 2B, 3B and 7B parameters, specifically to enhance their proficiency in software API interactions. Our approach concentrates on refining the models' grasp of API structures and syntax, significantly enhancing the accuracy of API function calls. Additionally, we propose \textit{conditional masking} techniques to ensure outputs in the desired formats and reduce error rates while maintaining inference speeds. We also propose a novel benchmark designed to evaluate the effectiveness of LLMs in API interactions, establishing a foundation for subsequent research. Octopus, the fine-tuned model, is proved to have better performance than GPT-4 for the software APIs calling. This research aims to advance automated software development and API integration, representing substantial progress in aligning LLM capabilities with the demands of practical software engineering applications. 
653 |a Application programming interface 
653 |a Error reduction 
653 |a Software engineering 
653 |a Large language models 
653 |a Applications programs 
653 |a Artificial intelligence 
653 |a Octopuses 
653 |a Software development 
653 |a Computer programming 
700 1 |a Li, Zhiyuan 
700 1 |a Ma, Mingyuan 
773 0 |t arXiv.org  |g (Apr 2, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3031410396/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2404.01549