Proximal Oracles for Optimization and Sampling
Guardado en:
| Publicado en: | arXiv.org (Apr 2, 2024), p. n/a |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
Cornell University Library, arXiv.org
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full text outside of ProQuest |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | We consider convex optimization with non-smooth objective function and log-concave sampling with non-smooth potential (negative log density). In particular, we study two specific settings where the convex objective/potential function is either semi-smooth or in composite form as the finite sum of semi-smooth components. To overcome the challenges caused by non-smoothness, our algorithms employ two powerful proximal frameworks in optimization and sampling: the proximal point framework for optimization and the alternating sampling framework (ASF) that uses Gibbs sampling on an augmented distribution. A key component of both optimization and sampling algorithms is the efficient implementation of the proximal map by the regularized cutting-plane method. We establish the iteration-complexity of the proximal map in both semi-smooth and composite settings. We further propose an adaptive proximal bundle method for non-smooth optimization. The proposed method is universal since it does not need any problem parameters as input. Additionally, we develop a proximal sampling oracle that resembles the proximal map in optimization and establish its complexity using a novel technique (a modified Gaussian integral). Finally, we combine this proximal sampling oracle and ASF to obtain a Markov chain Monte Carlo method with non-asymptotic complexity bounds for sampling in semi-smooth and composite settings. |
|---|---|
| ISSN: | 2331-8422 |
| Fuente: | Engineering Database |