Asymptotic speedup via effect handlers
Zapisane w:
| Wydane w: | Journal of Functional Programming vol. 34 (2024) |
|---|---|
| 1. autor: | |
| Kolejni autorzy: | , |
| Wydane: |
Cambridge University Press
|
| Hasła przedmiotowe: | |
| Dostęp online: | Citation/Abstract Full Text - PDF |
| Etykiety: |
Nie ma etykietki, Dołącz pierwszą etykiete!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3033000105 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 0956-7968 | ||
| 022 | |a 1469-7653 | ||
| 024 | 7 | |a 10.1017/S0956796824000030 |2 doi | |
| 035 | |a 3033000105 | ||
| 045 | 2 | |b d20240101 |b d20241231 | |
| 084 | |a 79046 |2 nlm | ||
| 100 | 1 | |a HILLERSTRÖM, DANIEL |u Laboratory for Foundations of Computer Science, The University of Edinburgh, Edinburgh EH8 9YL, UK (e-mail: daniel.hillerstrom@ed.ac.uk ) | |
| 245 | 1 | |a Asymptotic speedup via effect handlers | |
| 260 | |b Cambridge University Press |c 2024 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a We study a fundamental efficiency benefit afforded by delimited control, showing that for certain higher-order functions, a language with advanced control features offers an asymptotic improvement in runtime over a language without them. Specifically, we consider the generic count problem in the context of a pure functional base language <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000030_inline1.png" />\({\lambda_{\textrm{b}}}\)</inline-formula> and an extension <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000030_inline2.png" />\({\lambda_{\textrm{h}}}\)</inline-formula> with general effect handlers. We prove that <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000030_inline3.png" />\({\lambda_{\textrm{h}}}\)</inline-formula> admits an asymptotically more efficient implementation of generic count than any implementation in <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000030_inline4.png" />\({\lambda_{\textrm{b}}}\)</inline-formula>. We also show that this gap remains even when <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000030_inline5.png" />\({\lambda_{\textrm{b}}}\)</inline-formula> is extended to a language <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000030_inline6.png" />\({{{{{{\lambda_{\textrm{a}}}}}}}}\)</inline-formula> with affine effect handlers, which is strong enough to encode exceptions, local state, coroutines and single-shot continuations. This locates the efficiency difference in the gap between ‘single-shot’ and ‘multi-shot’ versions of delimited control.To our knowledge, these results are the first of their kind for control operators. | |
| 653 | |a Mathematical functions | ||
| 653 | |a Programming languages | ||
| 653 | |a Asymptotic properties | ||
| 653 | |a Boolean | ||
| 653 | |a Efficiency | ||
| 700 | 1 | |a Lindley, Sam |u Laboratory for Foundations of Computer Science, The University of Edinburgh, Edinburgh EH8 9YL, UK (e-mail: sam.lindley@ed.ac.uk ) | |
| 700 | 1 | |a Longley, John |u Laboratory for Foundations of Computer Science, The University of Edinburgh, Edinburgh EH8 9YL, UK (e-mail: jrl@staffmail.ed.ac.uk ) | |
| 773 | 0 | |t Journal of Functional Programming |g vol. 34 (2024) | |
| 786 | 0 | |d ProQuest |t Advanced Technologies & Aerospace Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3033000105/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3033000105/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |