Asymptotic speedup via effect handlers

Zapisane w:
Opis bibliograficzny
Wydane w:Journal of Functional Programming vol. 34 (2024)
1. autor: HILLERSTRÖM, DANIEL
Kolejni autorzy: Lindley, Sam, Longley, John
Wydane:
Cambridge University Press
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3033000105
003 UK-CbPIL
022 |a 0956-7968 
022 |a 1469-7653 
024 7 |a 10.1017/S0956796824000030  |2 doi 
035 |a 3033000105 
045 2 |b d20240101  |b d20241231 
084 |a 79046  |2 nlm 
100 1 |a HILLERSTRÖM, DANIEL  |u Laboratory for Foundations of Computer Science, The University of Edinburgh, Edinburgh EH8 9YL, UK (e-mail: daniel.hillerstrom@ed.ac.uk ) 
245 1 |a Asymptotic speedup via effect handlers 
260 |b Cambridge University Press  |c 2024 
513 |a Journal Article 
520 3 |a We study a fundamental efficiency benefit afforded by delimited control, showing that for certain higher-order functions, a language with advanced control features offers an asymptotic improvement in runtime over a language without them. Specifically, we consider the generic count problem in the context of a pure functional base language <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000030_inline1.png" />\({\lambda_{\textrm{b}}}\)</inline-formula> and an extension <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000030_inline2.png" />\({\lambda_{\textrm{h}}}\)</inline-formula> with general effect handlers. We prove that <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000030_inline3.png" />\({\lambda_{\textrm{h}}}\)</inline-formula> admits an asymptotically more efficient implementation of generic count than any implementation in <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000030_inline4.png" />\({\lambda_{\textrm{b}}}\)</inline-formula>. We also show that this gap remains even when <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000030_inline5.png" />\({\lambda_{\textrm{b}}}\)</inline-formula> is extended to a language <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000030_inline6.png" />\({{{{{{\lambda_{\textrm{a}}}}}}}}\)</inline-formula> with affine effect handlers, which is strong enough to encode exceptions, local state, coroutines and single-shot continuations. This locates the efficiency difference in the gap between ‘single-shot’ and ‘multi-shot’ versions of delimited control.To our knowledge, these results are the first of their kind for control operators. 
653 |a Mathematical functions 
653 |a Programming languages 
653 |a Asymptotic properties 
653 |a Boolean 
653 |a Efficiency 
700 1 |a Lindley, Sam  |u Laboratory for Foundations of Computer Science, The University of Edinburgh, Edinburgh EH8 9YL, UK (e-mail: sam.lindley@ed.ac.uk ) 
700 1 |a Longley, John  |u Laboratory for Foundations of Computer Science, The University of Edinburgh, Edinburgh EH8 9YL, UK (e-mail: jrl@staffmail.ed.ac.uk ) 
773 0 |t Journal of Functional Programming  |g vol. 34 (2024) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3033000105/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3033000105/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch