Soft Demapping of Spherical Codes from Cartesian Powers of PAM Constellations

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Nov 20, 2024), p. n/a
Autore principale: Reza Rafie Borujeny
Altri autori: Rumsey, Susanna E, Draper, Stark C, Kschischang, Frank R
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3034837032
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3034837032 
045 0 |b d20241120 
100 1 |a Reza Rafie Borujeny 
245 1 |a Soft Demapping of Spherical Codes from Cartesian Powers of PAM Constellations 
260 |b Cornell University Library, arXiv.org  |c Nov 20, 2024 
513 |a Working Paper 
520 3 |a For applications in concatenated coding for optical communications systems, we examine soft-demapping of short spherical codes constructed as constant-energy shells of the Cartesian power of pulse amplitude modulation constellations. These are unions of permutation codes having the same average power. We construct a list decoder for permutation codes by adapting Murty's algorithm, which is then used to determine mutual information curves for these permutation codes. In the process, we discover a straightforward expression for determining the likelihood of large subcodes of permutation codes called orbits. We introduce a simple process, called orbit demapping, that allows us to extract soft information from noisy permutation codewords. In a sample communication system with probabilistic amplitude shaping protected by a standard low-density parity-check code that employs short permutation codes, we demonstrate that orbit demapping provides a gain of about 0.3 dB in signal-to-noise ratio compared to the traditional symbol-by-symbol demapping. By using spherical codes composed of unions of permutation codes, we can increase the input entropy compared to using permutation codes alone. In one scheme, we consider a union of a small number of permutation codes. In this case, orbit demapping provides about 0.2 dB gain compared to the traditional method. In another scheme, we use all possible permutations to form a spherical code that exhibits a computationally feasible trellis representation. The soft information obtained using the BCJR algorithm outperforms the traditional symbol-by-symbol method by 0.1 dB. Using the spherical codes containing all possible permutation codes of the same average power and the BCJR algorithm, a gain of 0.5 dB is observed. Comparison of the achievable information rates of bit-metric decoding verifies the observed gains. 
653 |a Noise levels 
653 |a Algorithms 
653 |a Communications systems 
653 |a Unions 
653 |a Codes 
653 |a Symbols 
653 |a Permutations 
653 |a Decoding 
653 |a Pulse amplitude modulation 
653 |a Error correcting codes 
653 |a Optical communication 
653 |a Cartesian coordinates 
653 |a Signal to noise ratio 
700 1 |a Rumsey, Susanna E 
700 1 |a Draper, Stark C 
700 1 |a Kschischang, Frank R 
773 0 |t arXiv.org  |g (Nov 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3034837032/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2404.04776