Differential fuzz testing to detect tampering in sensor systems and its application to arms control authentication

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Apr 9, 2024), p. n/a
Hovedforfatter: Vavrek, Jayson R
Andre forfattere: Zhou, Luozhong, Boverhof, Joshua, Heymann, Elisa R, Miller, Barton P, Peisert, Sean
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3035347879
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3035347879 
045 0 |b d20240409 
100 1 |a Vavrek, Jayson R 
245 1 |a Differential fuzz testing to detect tampering in sensor systems and its application to arms control authentication 
260 |b Cornell University Library, arXiv.org  |c Apr 9, 2024 
513 |a Working Paper 
520 3 |a In future nuclear arms control treaties, it will be necessary to authenticate the hardware and software components of verification measurement systems, i.e., to ensure these systems are functioning as intended and have not been tampered with by malicious actors. While methods such as source code hashing and static analysis can help verify the integrity of software components, they may not be capable of detecting tampering with environment variables, external libraries, or the firmware and hardware of radiation measurement systems. In this article, we introduce the concept of physical differential fuzz testing as a challenge-response-style tamper indicator that can holistically and simultaneously test all the above components in a cyber-physical system. In essence, we randomly sample (or "fuzz") the untampered system's parameter space, including both normal and off-normal parameter values, and consider the time series of outputs as the baseline signature of the system. Re-running the same input sequence on a untampered system will produce an output sequence consistent with this baseline, while running the same input sequence on a tampered system will produce a modified output sequence and raise an alarm. We then apply this concept to authenticating the radiation measurement equipment in nuclear weapon verification systems and conduct demonstration fuzz testing measurements with a sodium iodide (NaI) gamma ray spectrometer. Because there is Poisson noise in the measured output spectra, we also use a mechanism for comparing inherently noisy or stochastic fuzzing sequences. We show that physical differential fuzz testing can detect two types of tamper attempts, and conclude that it is a promising framework for authenticating future cyber-physical systems in nuclear arms control, safeguards, and beyond. 
653 |a Computer program integrity 
653 |a Source code 
653 |a Nuclear weapons 
653 |a Verification 
653 |a Static code analysis 
653 |a Arms control & disarmament 
653 |a Cyber-physical systems 
653 |a Hardware 
653 |a Gamma ray spectrometers 
653 |a Control systems 
653 |a Sequences 
653 |a Radiation measurement 
653 |a Authentication 
653 |a Parameters 
653 |a Radiation 
653 |a Software 
653 |a Software testing 
700 1 |a Zhou, Luozhong 
700 1 |a Boverhof, Joshua 
700 1 |a Heymann, Elisa R 
700 1 |a Miller, Barton P 
700 1 |a Peisert, Sean 
773 0 |t arXiv.org  |g (Apr 9, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3035347879/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2404.05946