Application of a functional transformation to simulation of separation processes

Uloženo v:
Podrobná bibliografie
Vydáno v:ProQuest Dissertations and Theses (1988)
Hlavní autor: Vazquez-Esparragoza, Jorge Javier
Vydáno:
ProQuest Dissertations & Theses
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 303645189
003 UK-CbPIL
020 |a 979-8-207-79984-1 
035 |a 303645189 
045 0 |b d19880101 
084 |a 66569  |2 nlm 
100 1 |a Vazquez-Esparragoza, Jorge Javier 
245 1 |a Application of a functional transformation to simulation of separation processes 
260 |b ProQuest Dissertations & Theses  |c 1988 
513 |a Dissertation/Thesis 
520 3 |a A functional transformation method has been developed for solving separation problems which are difficult to converge. These problems consist of sets of nonlinear equations with the presence of either maxima, minima, turning points, singular or near singular Jacobians in their solution paths. First, the Functional Transformation Method is used in combination with the Newton-Raphson method to trace the path of a function through a local maximum or minimum. If, in the course of searching for the x that makes the function f(x) = 0, an $x\sb{k}$ is found for which $f\sp\prime(x\sb{k})$ = 0, or for which the norm of the functions $\vert f(x\sb{k})\vert$ $>$ $\vert f(x\sb{k-1})\vert$, a new function $F(x)$, having the same solution as $f(x)$ but a different slope, is defined such that $\vert F(x\sb{k})\vert$ $<$ $\vert F(x\sb{k-1})\vert$. After having passed through the maximum or minimum, the procedure returns to the original function $f(x)$. Next, the combination of this method with other forms of the Newton-Raphson method is used to solve systems of nonlinear equations (distillation columns and absorbers). In particular, it is shown that the aforementioned combination results in a significant extension of the regions of convergence of the methods studied; namely, the Newton-Raphson method, the Almost Band formulation of the Newton-Raphson method, the 2N Newton-Raphson method with the Broyden modification, the 2N Newton-Raphson with the Broyden-Bennett modification, the Almost Band Algorithm with the Broyden-Householder modification, the Almost Band Algorithm with the Schubert modification, and the Gear Parametric Continuation method. The algorithms describing the application of the Functional Transformation method to the above methods are given in detail. 
653 |a Chemical engineering 
653 |a Computer science 
653 |a Mathematics 
773 0 |t ProQuest Dissertations and Theses  |g (1988) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/303645189/abstract/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/303645189/fulltextPDF/embedded/09EF48XIB41FVQI7?source=fedsrch