Monocular 3D lane detection for Autonomous Driving: Recent Achievements, Challenges, and Outlooks

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Oct 28, 2024), p. n/a
Autor principal: Ma, Fulong
Otros Autores: Qi, Weiqing, Zhao, Guoyang, Zheng, Linwei, Wang, Sheng, Liu, Yuxuan, Liu, Ming, Ma, Jun
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3037192806
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3037192806 
045 0 |b d20241028 
100 1 |a Ma, Fulong 
245 1 |a Monocular 3D lane detection for Autonomous Driving: Recent Achievements, Challenges, and Outlooks 
260 |b Cornell University Library, arXiv.org  |c Oct 28, 2024 
513 |a Working Paper 
520 3 |a 3D lane detection is essential in autonomous driving as it extracts structural and traffic information from the road in three-dimensional space, aiding self-driving cars in logical, safe, and comfortable path planning and motion control. Given the cost of sensors and the advantages of visual data in color information, 3D lane detection based on monocular vision is an important research direction in the realm of autonomous driving, increasingly gaining attention in both industry and academia. Regrettably, recent advancements in visual perception seem inadequate for the development of fully reliable 3D lane detection algorithms, which also hampers the progress of vision-based fully autonomous vehicles. We believe that there is still considerable room for improvement in 3D lane detection algorithms for autonomous vehicles using visual sensors, and significant enhancements are needed. This review looks back and analyzes the current state of achievements in the field of 3D lane detection research. It covers all current monocular-based 3D lane detection processes, discusses the performance of these cutting-edge algorithms, analyzes the time complexity of various algorithms, and highlights the main achievements and limitations of ongoing research efforts. The survey also includes a comprehensive discussion of available 3D lane detection datasets and the challenges that researchers face but have not yet resolved. Finally, our work outlines future research directions and invites researchers and practitioners to join this exciting field. 
653 |a Autonomous cars 
653 |a Monocular vision 
653 |a Algorithms 
653 |a Traffic information 
653 |a Complexity 
653 |a Visual perception 
653 |a Motion control 
653 |a Visual perception driven algorithms 
700 1 |a Qi, Weiqing 
700 1 |a Zhao, Guoyang 
700 1 |a Zheng, Linwei 
700 1 |a Wang, Sheng 
700 1 |a Liu, Yuxuan 
700 1 |a Liu, Ming 
700 1 |a Ma, Jun 
773 0 |t arXiv.org  |g (Oct 28, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3037192806/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2404.06860