Identification of Precursors in InSAR Time Series Using Functional Data Analysis Post-Processing: Demonstration on Mud Volcano Eruptions

Guardado en:
Bibliografiske detaljer
Udgivet i:Remote Sensing vol. 16, no. 7 (2024), p. 1191
Hovedforfatter: Fontana, Matteo
Andre forfattere: Bernardi, Mara Sabina, Cigna, Francesca, Deodato Tapete, Menafoglio, Alessandra, Vantini, Simone
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3037631100
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs16071191  |2 doi 
035 |a 3037631100 
045 2 |b d20240101  |b d20241231 
084 |a 231556  |2 nlm 
100 1 |a Fontana, Matteo  |u MOX-Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; <email>matteo.fontana@rhul.ac.uk</email> (M.F.); <email>alessandra.menafoglio@polimi.it</email> (A.M.); <email>simone.vantini@polimi.it</email> (S.V.) 
245 1 |a Identification of Precursors in InSAR Time Series Using Functional Data Analysis Post-Processing: Demonstration on Mud Volcano Eruptions 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a One of the most promising applications of satellite data is providing users in charge of land and emergency management with information and data to support decision making for geohazard mapping, monitoring and early warning. In this work, we consider ground displacement data obtained via interferometric processing of satellite radar imagery, and we provide a novel post-processing approach based on a Functional Data Analysis paradigm capable of detecting precursors in displacement time series. The proposed approach appropriately accounts for the spatial and temporal dependencies of the data and does not require prior assumptions on the deformation trend. As an illustrative case, we apply the developed method to the identification of precursors to a mud volcano eruption in the Santa Barbara village in Sicily, southern Italy, showing the advantages of using a Functional Data Analysis framework for anticipating the warning signal. Indeed, the proposed approach is able to detect precursors of the paroxysmal event in the time series of the locations close to the eruption vent and provides a warning signal months before a scalar approach would. The method presented can potentially be applied to a wide range of geological events, thus representing a valuable and far-reaching monitoring tool. 
653 |a Kinematics 
653 |a Datasets 
653 |a Emergency management 
653 |a Data analysis 
653 |a Mud 
653 |a Emergency preparedness 
653 |a Interferometric synthetic aperture radar 
653 |a Forecasting techniques 
653 |a Velocity 
653 |a Volcanic eruptions 
653 |a Volcanoes 
653 |a Time series 
653 |a Emergency communications systems 
653 |a Precursors 
653 |a Earthquakes 
653 |a Algorithms 
653 |a Decision making 
653 |a Hypothesis testing 
653 |a Satellite imagery 
653 |a Radar imaging 
653 |a Monitoring 
653 |a Eruptions 
653 |a Geology 
653 |a Sensors 
653 |a Geological hazards 
653 |a Information management 
653 |a Statistical methods 
700 1 |a Bernardi, Mara Sabina  |u MOX-Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; <email>matteo.fontana@rhul.ac.uk</email> (M.F.); <email>alessandra.menafoglio@polimi.it</email> (A.M.); <email>simone.vantini@polimi.it</email> (S.V.) 
700 1 |a Cigna, Francesca  |u Italian Space Agency (ASI), Via del Politecnico snc, 00133 Rome, Italy; <email>f.cigna@isac.cnr.it</email> (F.C.); <email>deodato.tapete@asi.it</email> (D.T.) 
700 1 |a Deodato Tapete  |u Italian Space Agency (ASI), Via del Politecnico snc, 00133 Rome, Italy; <email>f.cigna@isac.cnr.it</email> (F.C.); <email>deodato.tapete@asi.it</email> (D.T.) 
700 1 |a Menafoglio, Alessandra  |u MOX-Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; <email>matteo.fontana@rhul.ac.uk</email> (M.F.); <email>alessandra.menafoglio@polimi.it</email> (A.M.); <email>simone.vantini@polimi.it</email> (S.V.) 
700 1 |a Vantini, Simone  |u MOX-Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; <email>matteo.fontana@rhul.ac.uk</email> (M.F.); <email>alessandra.menafoglio@polimi.it</email> (A.M.); <email>simone.vantini@polimi.it</email> (S.V.) 
773 0 |t Remote Sensing  |g vol. 16, no. 7 (2024), p. 1191 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3037631100/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3037631100/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3037631100/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch