Behavior Trees Enable Structured Programming of Language Model Agents

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Apr 11, 2024), p. n/a
Hovedforfatter: Kelley, Richard
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3037661694
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3037661694 
045 0 |b d20240411 
100 1 |a Kelley, Richard 
245 1 |a Behavior Trees Enable Structured Programming of Language Model Agents 
260 |b Cornell University Library, arXiv.org  |c Apr 11, 2024 
513 |a Working Paper 
520 3 |a Language models trained on internet-scale data sets have shown an impressive ability to solve problems in Natural Language Processing and Computer Vision. However, experience is showing that these models are frequently brittle in unexpected ways, and require significant scaffolding to ensure that they operate correctly in the larger systems that comprise "language-model agents." In this paper, we argue that behavior trees provide a unifying framework for combining language models with classical AI and traditional programming. We introduce Dendron, a Python library for programming language model agents using behavior trees. We demonstrate the approach embodied by Dendron in three case studies: building a chat agent, a camera-based infrastructure inspection agent for use on a mobile robot or vehicle, and an agent that has been built to satisfy safety constraints that it did not receive through instruction tuning or RLHF. 
653 |a Python 
653 |a Structured programming 
653 |a Computer vision 
653 |a Natural language processing 
653 |a Programming languages 
653 |a Scaffolding 
773 0 |t arXiv.org  |g (Apr 11, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3037661694/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2404.07439