Software Engineering Methods For AI-Driven Deductive Legal Reasoning
Na minha lista:
| Publicado no: | arXiv.org (Jun 27, 2024), p. n/a |
|---|---|
| Autor principal: | |
| Publicado em: |
Cornell University Library, arXiv.org
|
| Assuntos: | |
| Acesso em linha: | Citation/Abstract Full text outside of ProQuest |
| Tags: |
Sem tags, seja o primeiro a adicionar uma tag!
|
| Resumo: | The recent proliferation of generative artificial intelligence (AI) technologies such as pre-trained large language models (LLMs) has opened up new frontiers in computational law. An exciting area of development is the use of AI to automate the deductive rule-based reasoning inherent in statutory and contract law. This paper argues that such automated deductive legal reasoning can now be viewed from the lens of software engineering, treating LLMs as interpreters of natural-language programs with natural-language inputs. We show how it is possible to apply principled software engineering techniques to enhance AI-driven legal reasoning of complex statutes and to unlock new applications in automated meta-reasoning such as mutation-guided example generation and metamorphic property-based testing. |
|---|---|
| ISSN: | 2331-8422 |
| Fonte: | Engineering Database |