Deep Reinforcement Learning based Online Scheduling Policy for Deep Neural Network Multi-Tenant Multi-Accelerator Systems

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Apr 13, 2024), p. n/a
Autor principal: Blanco, Francesco G
Otros Autores: Russo, Enrico, Palesi, Maurizio, Patti, Davide, Ascia, Giuseppe, Catania, Vincenzo
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3039629878
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3039629878 
045 0 |b d20240413 
100 1 |a Blanco, Francesco G 
245 1 |a Deep Reinforcement Learning based Online Scheduling Policy for Deep Neural Network Multi-Tenant Multi-Accelerator Systems 
260 |b Cornell University Library, arXiv.org  |c Apr 13, 2024 
513 |a Working Paper 
520 3 |a Currently, there is a growing trend of outsourcing the execution of DNNs to cloud services. For service providers, managing multi-tenancy and ensuring high-quality service delivery, particularly in meeting stringent execution time constraints, assumes paramount importance, all while endeavoring to maintain cost-effectiveness. In this context, the utilization of heterogeneous multi-accelerator systems becomes increasingly relevant. This paper presents RELMAS, a low-overhead deep reinforcement learning algorithm designed for the online scheduling of DNNs in multi-tenant environments, taking into account the dataflow heterogeneity of accelerators and memory bandwidths contentions. By doing so, service providers can employ the most efficient scheduling policy for user requests, optimizing Service-Level-Agreement (SLA) satisfaction rates and enhancing hardware utilization. The application of RELMAS to a heterogeneous multi-accelerator system composed of various instances of Simba and Eyeriss sub-accelerators resulted in up to a 173% improvement in SLA satisfaction rate compared to state-of-the-art scheduling techniques across different workload scenarios, with less than a 1.5% energy overhead. 
653 |a Scheduling 
653 |a Algorithms 
653 |a Deep learning 
653 |a System effectiveness 
653 |a Computer aided scheduling 
653 |a Machine learning 
653 |a Artificial neural networks 
653 |a Accelerators 
653 |a Heterogeneity 
700 1 |a Russo, Enrico 
700 1 |a Palesi, Maurizio 
700 1 |a Patti, Davide 
700 1 |a Ascia, Giuseppe 
700 1 |a Catania, Vincenzo 
773 0 |t arXiv.org  |g (Apr 13, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3039629878/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2404.08950