Low-Complexity Block-Based Decoding Algorithms for Short Block Channels

Gardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Apr 15, 2024), p. n/a
Autor Principal: Mody Sy
Outros autores: Knopp, Raymond
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en liña:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3040956430
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1109/AFRICON55910.2023.10293604  |2 doi 
035 |a 3040956430 
045 0 |b d20240415 
100 1 |a Mody Sy 
245 1 |a Low-Complexity Block-Based Decoding Algorithms for Short Block Channels 
260 |b Cornell University Library, arXiv.org  |c Apr 15, 2024 
513 |a Working Paper 
520 3 |a This paper presents low-complexity block-based encoding and decoding algorithms for short block length channels. In terms of the precise use-case, we are primarily concerned with the baseline 3GPP Short block transmissions in which payloads are encoded by Reed-Muller codes and paired with orthogonal DMRS. In contemporary communication systems, the short block decoding often employs the utilization of DMRS-based least squares channel estimation, followed by maximum likelihood decoding. However, this methodology can incur substantial computational complexity when processing long bit length codes. We propose an innovative approach to tackle this challenge by introducing the principle of block/segment encoding using First-Order RM Codes which is amenable to low-cost decoding through block-based fast Hadamard transforms. The Block-based FHT has demonstrated to be cost-efficient with regards to decoding time, as it evolves from quadric to quasi-linear complexity with a manageable decline in performance. Additionally, by incorporating an adaptive DMRS/data power adjustment technique, we can bridge/reduce the performance gap and attain high sensitivity, leading to a good trade-off between performance and complexity to efficiently handle small payloads. 
653 |a Communications systems 
653 |a Algorithms 
653 |a Maximum likelihood estimation 
653 |a Payloads 
653 |a Channels 
653 |a Complexity 
653 |a Maximum likelihood decoding 
653 |a Coding 
700 1 |a Knopp, Raymond 
773 0 |t arXiv.org  |g (Apr 15, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3040956430/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2404.10798