Improving the Reliability of Peer Review Without a Gold Standard

Gardado en:
Detalles Bibliográficos
Publicado en:Journal of Digital Imaging vol. 37, no. 2 (Apr 2024), p. 489
Autor Principal: Äijö, Tarmo
Outros autores: Elgort, Daniel, Becker, Murray, Herzog, Richard, Brown, Richard K. J., Odry, Benjamin L., Vianu, Ron
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3041683191
003 UK-CbPIL
022 |a 0897-1889 
022 |a 1618-727X 
024 7 |a 10.1007/s10278-024-00971-9  |2 doi 
035 |a 3041683191 
045 2 |b d20240401  |b d20240430 
084 |a 66959  |2 nlm 
100 1 |a Äijö, Tarmo  |u Covera Health, New York, USA 
245 1 |a Improving the Reliability of Peer Review Without a Gold Standard 
260 |b Springer Nature B.V.  |c Apr 2024 
513 |a Journal Article 
520 3 |a Peer review plays a crucial role in accreditation and credentialing processes as it can identify outliers and foster a peer learning approach, facilitating error analysis and knowledge sharing. However, traditional peer review methods may fall short in effectively addressing the interpretive variability among reviewing and primary reading radiologists, hindering scalability and effectiveness. Reducing this variability is key to enhancing the reliability of results and instilling confidence in the review process. In this paper, we propose a novel statistical approach called “Bayesian Inter-Reviewer Agreement Rate” (BIRAR) that integrates radiologist variability. By doing so, BIRAR aims to enhance the accuracy and consistency of peer review assessments, providing physicians involved in quality improvement and peer learning programs with valuable and reliable insights. A computer simulation was designed to assign predefined interpretive error rates to hypothetical interpreting and peer-reviewing radiologists. The Monte Carlo simulation then sampled (100 samples per experiment) the data that would be generated by peer reviews. The performances of BIRAR and four other peer review methods for measuring interpretive error rates were then evaluated, including a method that uses a gold standard diagnosis. Application of the BIRAR method resulted in 93% and 79% higher relative accuracy and 43% and 66% lower relative variability, compared to “Single/Standard” and “Majority Panel” peer review methods, respectively. Accuracy was defined by the median difference of Monte Carlo simulations between measured and pre-defined “actual” interpretive error rates. Variability was defined by the 95% CI around the median difference of Monte Carlo simulations between measured and pre-defined “actual” interpretive error rates. BIRAR is a practical and scalable peer review method that produces more accurate and less variable assessments of interpretive quality by accounting for variability within the group’s radiologists, implicitly applying a standard derived from the level of consensus within the group across various types of interpretive findings. 
653 |a Measurement methods 
653 |a Outliers (statistics) 
653 |a Reviewing 
653 |a Accuracy 
653 |a Peer review 
653 |a Assessments 
653 |a Computer simulation 
653 |a Error analysis 
653 |a Median (statistics) 
653 |a Variability 
653 |a Data analysis 
653 |a Monte Carlo simulation 
653 |a Bayesian analysis 
653 |a Learning programs 
653 |a Quality control 
653 |a Reliability 
653 |a Reviews 
700 1 |a Elgort, Daniel  |u Covera Health, New York, USA; Present Address: Aster Insights, Tampa, USA 
700 1 |a Becker, Murray  |u Covera Health, New York, USA; Rutgers Robert Wood Johnson Medical School, New Brunswick, USA (GRID:grid.430387.b) (ISNI:0000 0004 1936 8796) 
700 1 |a Herzog, Richard  |u Covera Health, New York, USA (GRID:grid.430387.b) 
700 1 |a Brown, Richard K. J.  |u University of Michigan (Michigan Medicine), Department of Radiology, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000 0004 1936 7347) 
700 1 |a Odry, Benjamin L.  |u Covera Health, New York, USA (GRID:grid.214458.e) 
700 1 |a Vianu, Ron  |u Covera Health, New York, USA (GRID:grid.214458.e) 
773 0 |t Journal of Digital Imaging  |g vol. 37, no. 2 (Apr 2024), p. 489 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3041683191/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3041683191/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch