Virtual design on the heat pump refrigeration cycle: challenges and approaches

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:International Journal of Air-Conditioning and Refrigeration vol. 32, no. 1 (Dec 2024), p. 8
Kaituhi matua: Hwang, Yoon Jei
Ētahi atu kaituhi: Park, Noma
I whakaputaina:
Springer Nature B.V.
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
Whakaahuatanga
Whakarāpopotonga:Virtual product design (VPD) of the refrigeration cycle has long been a major subject of many engineers and manufacturers. Issues should be the question of how simulation gets close to the real world in virtual ways. It is especially true when we consider variable refrigerant flow (VRF) heat pumps, having various types of indoor unit combinations, long and complicated piping configurations, and simultaneous cooling and heating functions under extreme weather conditions. In this regard, model-based systems engineering (MBSE) or model-based design (MBD) guides a methodology to make a virtual model easily. Now, there are plenty of engineering platforms and tools to make a strong simulation model, which provides interfacing technology among multiple physics, different dimensions, and codes in different languages. In the study, the authors share their experience in the virtual design for a VRF heat pump system including the architecture, multiple physics, and the connection with the control SW. Modelica, an acausal and object-oriented modeling language, constructs the backbone of the model to describe the dynamic behavior of refrigerants and to combine external components in the form of functional mock-up units (FMUs). The developed virtual model is validated against measured data, showing it can reproduce all the essential physics of interest both in qualitative and quantitative ways.
ISSN:2010-1325
DOI:10.1007/s44189-024-00052-0
Puna:Engineering Database