A comparison of hidden Markov model features for the recognition of cursive handwriting

Guardat en:
Dades bibliogràfiques
Publicat a:ProQuest Dissertations and Theses (1996)
Autor principal: Connell, Scott Darren
Publicat:
ProQuest Dissertations & Theses
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 304259125
003 UK-CbPIL
020 |a 9798678177278 
035 |a 304259125 
045 0 |b d19960101 
084 |a 66569  |2 nlm 
100 1 |a Connell, Scott Darren 
245 1 |a A comparison of hidden Markov model features for the recognition of cursive handwriting 
260 |b ProQuest Dissertations & Theses  |c 1996 
513 |a Dissertation/Thesis 
520 3 |a Due to the difficulty of character segmentation in cursive handwriting recognition, much recent research has turned to segmentation free approaches of word recognition. While techniques of feature extraction for presegmented characters have been thoroughly explored in the literature, an evaluation of features for use with segmentation during recognition techniques remains sparse. The main purpose of this thesis is to provide a comparison of a number of feature extraction techniques applied to the domain of legal amount recognition in bank checks. An experimental system using Hidden Markov Models and a horizontally sliding window is described. Results are presented for the recognition of the entire legal field using a variety of features. Of the experiments presented here, the best results were obtained by concatenating the feature vectors from the present, previous, and next windows and using principal component analysis to reduce the dimensionality of this resulting vector. 
653 |a Computer science 
773 0 |t ProQuest Dissertations and Theses  |g (1996) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/304259125/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/304259125/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch