A quantitative analysis of the Carnegie Mellon Software Engineering Institute's Capability Maturity Model: A latent variable model

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2000)
Autor principal: Chang, Shaoming
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 304587318
003 UK-CbPIL
020 |a 978-0-599-92945-6 
035 |a 304587318 
045 0 |b d20000101 
084 |a 66569  |2 nlm 
100 1 |a Chang, Shaoming 
245 1 |a A quantitative analysis of the Carnegie Mellon Software Engineering Institute's Capability Maturity Model: A latent variable model 
260 |b ProQuest Dissertations & Theses  |c 2000 
513 |a Dissertation/Thesis 
520 3 |a The Capability Maturity Model developed by Carnegie Mellon University's Software Engineering Institute (SEI/CMM) was the most commonly used method for enhancing software development/maintenance processes in the 1990s. The focus of SEI/CMM's research is to build a common production function for each of the five maturity levels (I to V) by comparing the behavior of the production functions of each level and then assessing the advantages and disadvantages of each production function for advancing the organization's maturity level. This research chose the Latent Variable Model (LVM) to fit the production function because in the world of software engineering, models must frequently be compromised or modified to reflect the sampled data. By introducing latent variables we could reproduce the most typical practical production environment. The LVM we studied is composed of the following two group of variables: (1) tangible variables, that is, sampled data (Function point, Duration, Man month, Team size); (2) intangible variables, that is, latent variables (Management effort, Production process). We also study Dr. Frederick Brooks' Man month myth among the five maturity levels. To analyze the differences, we then used the COCOMO model with an additional Team size factor. Does the Team size overhead go away at higher maturity levels or does it tag along? One of the purposes of this study was to find an answer. To conclude the Production function, the Dynamic model was used. 
653 |a Computer science 
653 |a Models 
653 |a Studies 
653 |a Software engineering 
653 |a Production planning 
653 |a Management 
653 |a Production functions 
653 |a Behavior 
653 |a Random access memory 
653 |a Computer peripherals 
653 |a Productivity 
653 |a Cost estimates 
653 |a Questionnaires 
653 |a Scheduling 
653 |a Software quality 
653 |a Corporate culture 
653 |a Planning 
653 |a Variables 
653 |a Copyright 
653 |a Correlation analysis 
653 |a Cluster analysis 
653 |a Integrated software 
653 |a Performance management 
653 |a Work environment 
653 |a Software development 
773 0 |t ProQuest Dissertations and Theses  |g (2000) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/304587318/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/304587318/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch