An Optimized Air Traffic Departure Sequence According to the Standard Instrument Departures

Na minha lista:
Detalhes bibliográficos
Publicado no:International Journal of Advanced Computer Science and Applications vol. 15, no. 3 (2024)
Autor principal: PDF
Publicado em:
Science and Information (SAI) Organization Limited
Assuntos:
Acesso em linha:Citation/Abstract
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3046786349
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2024.01503133  |2 doi 
035 |a 3046786349 
045 2 |b d20240101  |b d20241231 
100 1 |a PDF 
245 1 |a An Optimized Air Traffic Departure Sequence According to the Standard Instrument Departures 
260 |b Science and Information (SAI) Organization Limited  |c 2024 
513 |a Journal Article 
520 3 |a Sequencing efficiently the departure traffic remains among the critical parts of air traffic management these days. It not only reduces delays and congestion at hold points, but it also enhances airport operations, improves traffic planning, and increases capacity. This research paper proposes an approach, that employs a genetic algorithm (GA), to help air traffic con-trollers in organizing a sequence for the departure traffic based on the standard instrument departures (SIDs) configuration. A scenario with Randomly assigned types, SIDs, and departure times was applied to a set of aircraft in a terminal area with a four-SID configuration to assess the performance of the suggested GA. Subsequently, a comparison with the standard method of First Come First Served (FCFS) was conducted. The testing data revealed promising results in terms of the total spent time to reach a specified altitude after takeoff. 
653 |a Configuration management 
653 |a Traffic congestion 
653 |a Genetic algorithms 
653 |a Air traffic management 
653 |a Traffic planning 
653 |a Critical components 
653 |a Collaboration 
653 |a Computer science 
653 |a Optimization 
653 |a Aviation 
653 |a Traffic flow 
653 |a Automation 
653 |a Air traffic control 
653 |a Efficiency 
653 |a COVID-19 
653 |a Aircraft 
653 |a Scheduling 
653 |a Infrastructure 
653 |a Decision making 
653 |a Air transportation industry 
653 |a Airports 
653 |a Air traffic controllers 
653 |a Linear programming 
653 |a Air travel 
653 |a Airlines 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 15, no. 3 (2024) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3046786349/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3046786349/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch