Beyond BERT: Exploring the Efficacy of RoBERTa and ALBERT in Supervised Multiclass Text Classification

Enregistré dans:
Détails bibliographiques
Publié dans:International Journal of Advanced Computer Science and Applications vol. 15, no. 3 (2024)
Auteur principal: PDF
Publié:
Science and Information (SAI) Organization Limited
Sujets:
Accès en ligne:Citation/Abstract
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3046786365
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2024.0150323  |2 doi 
035 |a 3046786365 
045 2 |b d20240101  |b d20241231 
100 1 |a PDF 
245 1 |a Beyond BERT: Exploring the Efficacy of RoBERTa and ALBERT in Supervised Multiclass Text Classification 
260 |b Science and Information (SAI) Organization Limited  |c 2024 
513 |a Journal Article 
520 3 |a This study investigates the performance of transformer-based machine learning models, specifically BERT, RoBERTa, and ALBERT, in multiclass text classification within the context of the Universal Access to Quality Tertiary Education (UAQTE) program. The aim is to systematically categorize and analyze qualitative responses to uncover domain-specific patterns in students' experiences. Through rigorous evaluation of various hyperparameter configurations, consistent enhancements in model performance are observed with smaller batch sizes and increased epochs, while optimal learning rates further boost accuracy. However, achieving an optimal balance between sequence length and model efficacy presents nuanced challenges, with instances of overfitting emerging after a certain number of epochs. Notably, the findings underscore the effectiveness of the UAQTE program in addressing student needs, particularly evident in categories such as "Family Support" and "Financial Support," with RoBERTa emerging as a standout choice due to its stable performance during training. Future research should focus on fine-tuning hyperparameter values and adopting continuous monitoring mechanisms to reduce overfitting. Furthermore, ongoing review and modification of educational efforts, informed by evidence-based decision-making and stakeholder feedback, is critical to fulfill students' changing needs effectively. 
653 |a Qualitative analysis 
653 |a Text categorization 
653 |a Classification 
653 |a Machine learning 
653 |a Students 
653 |a Effectiveness 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 15, no. 3 (2024) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3046786365/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3046786365/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch