A Fast IAA–Based SR–STAP Method for Airborne Radar

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Remote Sensing vol. 16, no. 8 (2024), p. 1388
Үндсэн зохиолч: Zhang, Shuguang
Бусад зохиолчид: Wang, Tong, Liu, Cheng, Ren, Bing
Хэвлэсэн:
MDPI AG
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3047079737
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs16081388  |2 doi 
035 |a 3047079737 
045 2 |b d20240101  |b d20241231 
084 |a 231556  |2 nlm 
100 1 |a Zhang, Shuguang 
245 1 |a A Fast IAA–Based SR–STAP Method for Airborne Radar 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Space–time adaptive processing (STAP) is an effective technology in clutter suppression and moving target detection for airborne radar. When working in the heterogeneous environment, the number of training samples that satisfy independent and identically distributed (IID) conditions is insufficient, making it difficult to ensure the estimation accuracy of the clutter plus noise covariance matrix for traditional STAP methods. Sparse recovery–based STAP (SR–STAP) methods have received widespread attention in the past few years. The accurate estimation of the clutter plus noise covariance matrix can be achieved using only a few training samples. The iterative adaptive approach (IAA) can quickly and accurately estimate the power spectrum, but applying this method directly to the STAP method cannot produce good performance. In this paper, a fast IAA–based SR–STAP method is proposed. Based on the weighted <inline-formula>l1</inline-formula> problem, the IAA spectrum is used as a weighted term to obtain a good approximation. In order to obtain an analytical solution, we use the weighted <inline-formula>l2</inline-formula> norm to approximate the weighted <inline-formula>l1</inline-formula> norm without loss of performance. Compared with the IAA–STAP method, the proposed method is more robust to errors. Moreover, the proposed method has a fast computational speed. The effectiveness of the proposed method is demonstrated by simulations. 
653 |a Covariance matrix 
653 |a Accuracy 
653 |a Radar detection 
653 |a Radar 
653 |a Adaptive sampling 
653 |a Maximum likelihood method 
653 |a Moving targets 
653 |a Target detection 
653 |a Exact solutions 
653 |a Clutter 
653 |a Training 
653 |a Airborne radar 
653 |a Space-time adaptive processing 
653 |a Radar systems 
700 1 |a Wang, Tong 
700 1 |a Liu, Cheng 
700 1 |a Ren, Bing 
773 0 |t Remote Sensing  |g vol. 16, no. 8 (2024), p. 1388 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3047079737/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3047079737/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3047079737/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch