Spin coupling is all you need: Encoding strong electron correlation on quantum computers

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:arXiv.org (Apr 29, 2024), p. n/a
المؤلف الرئيسي: Marti-Dafcik, Daniel
مؤلفون آخرون: Burton, Hugh G A, Tew, David P
منشور في:
Cornell University Library, arXiv.org
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3049780906
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3049780906 
045 0 |b d20240429 
100 1 |a Marti-Dafcik, Daniel 
245 1 |a Spin coupling is all you need: Encoding strong electron correlation on quantum computers 
260 |b Cornell University Library, arXiv.org  |c Apr 29, 2024 
513 |a Working Paper 
520 3 |a The performance of quantum algorithms for eigenvalue problems, such as computing Hamiltonian spectra, depends strongly on the overlap of the initial wavefunction and the target eigenvector. In a basis of Slater determinants, the representation of energy eigenstates of systems with \(N\) strongly correlated electrons requires a number of determinants that scales exponentially with \(N\). On classical processors, this restricts simulations to systems where \(N\) is small. Here, we show that quantum computers can efficiently simulate strongly correlated molecular systems by directly encoding the dominant entanglement structure in the form of spin-coupled initial states. This avoids resorting to expensive classical or quantum state preparation heuristics and instead exploits symmetries in the wavefunction. We provide quantum circuits for deterministic preparation of a family of spin eigenfunctions with \({N \choose N/2}\) Slater determinants with depth \(\mathcal{O}(N)\) and \(\mathcal{O}(N^2)\) local gates. Their use as highly entangled initial states in quantum algorithms reduces the total runtime of quantum phase estimation and related fault-tolerant methods by orders of magnitude. Furthermore, we assess the application of spin-coupled wavefunctions as initial states for a range of heuristic quantum algorithms, namely the variational quantum eigensolver, adiabatic state preparation, and different versions of quantum subspace diagonalization (QSD) including QSD based on real-time-evolved states. We also propose a novel QSD algorithm that exploits states obtained through adaptive quantum eigensolvers. For all algorithms, we demonstrate that using spin-coupled initial states drastically reduces the quantum resources required to simulate strongly correlated ground and excited states. Our work paves the way towards scalable quantum simulation of electronic structure for classically challenging systems. 
653 |a Eigenvalues 
653 |a Quantum computing 
653 |a Quantum entanglement 
653 |a Quantum computers 
653 |a Correlation 
653 |a Fault tolerance 
653 |a Electrons 
653 |a Algorithms 
653 |a Determinants 
653 |a Electronic structure 
653 |a Simulation 
653 |a Wave functions 
653 |a Coding 
653 |a Eigenvectors 
653 |a Hamiltonian functions 
700 1 |a Burton, Hugh G A 
700 1 |a Tew, David P 
773 0 |t arXiv.org  |g (Apr 29, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3049780906/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2404.18878