Programming language trends: An empirical study

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:ProQuest Dissertations and Theses (2003)
Tác giả chính: Chen, Yaofei
Được phát hành:
ProQuest Dissertations & Theses
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 305314351
003 UK-CbPIL
020 |a 978-0-542-16429-3 
035 |a 305314351 
045 0 |b d20030101 
084 |a 66569  |2 nlm 
100 1 |a Chen, Yaofei 
245 1 |a Programming language trends: An empirical study 
260 |b ProQuest Dissertations & Theses  |c 2003 
513 |a Dissertation/Thesis 
520 3 |a Predicting the evolution of software engineering technology trends is a dubious proposition. The recent evolution of software technology is a prime example; it is fast paced and affected by many factors, which are themselves driven by a wide range of sources. This dissertation is part of a long term project intended to analyze software engineering technology trends and how they evolve. Basically, the following questions will be answered: How to watch, predict, adapt to, and affect software engineering trends? In this dissertation, one field of software engineering, programming languages, will be discussed. After reviewing the history of a group of programming languages, it shows that two kinds of factors, intrinsic factors and extrinsic factors, could affect the evolution of a programming language. Intrinsic factors are the factors that can be used to describe the general design criteria of programming languages. Extrinsic factors are the factors that are not directly related to the general attributes of programming languages, but still can affect their evolution. In order to describe the relationship of these factors and how they affect programming language trends, these factors need to be quantified. A score has been assigned to each factor for every programming language. By collecting historical data, a data warehouse has been established, which stores the value of each factor for every programming language. The programming language trends are described and evaluated by using these data. Empirical research attempts to capture observed behaviors by empirical laws. In this dissertation, statistical methods are used to describe historical programming language trends and predict the evolution of the future trends. Several statistics models are constructed to describe the relationships among these factors. Canonical correlation is used to do the factor analysis. Multivariate multiple regression method has been used to construct the statistics models for programming language trends. After statistics models are constructed to describe the historical programming language trends, they are extended to do tentative prediction for future trends. The models are validated by comparing the predictive data and the actual data. 
653 |a Computer science 
773 0 |t ProQuest Dissertations and Theses  |g (2003) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/305314351/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/305314351/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch