Non-Random Data Encodes its Geometric and Topological Dimensions

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Dec 20, 2024), p. n/a
Hovedforfatter: Zenil, Hector
Andre forfattere: Abrahão, Felipe S, Luan C S M Ozelim
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3054659282
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3054659282 
045 0 |b d20241220 
100 1 |a Zenil, Hector 
245 1 |a Non-Random Data Encodes its Geometric and Topological Dimensions 
260 |b Cornell University Library, arXiv.org  |c Dec 20, 2024 
513 |a Working Paper 
520 3 |a Based on the principles of information theory, measure theory, and theoretical computer science, we introduce a signal deconvolution method with a wide range of applications to coding theory, particularly in zero-knowledge one-way communication channels, such as in deciphering messages (i.e., objects embedded into multidimensional spaces) from unknown generating sources about which no prior knowledge is available and to which no return message can be sent. Our multidimensional space reconstruction method from an arbitrary received signal is proven to be agnostic vis-à-vis the encoding-decoding scheme, computation model, programming language, formal theory, the computable (or semi-computable) method of approximation to algorithmic complexity, and any arbitrarily chosen (computable) probability measure. The method derives from the principles of an approach to Artificial General Intelligence (AGI) capable of building a general-purpose model of models independent of any arbitrarily assumed prior probability distribution. We argue that this optimal and universal method of decoding non-random data has applications to signal processing, causal deconvolution, topological and geometric properties encoding, cryptography, and bio- and technosignature detection. 
653 |a Deconvolution 
653 |a Encoding-Decoding 
653 |a Conditional probability 
653 |a Cryptography 
653 |a Signal processing 
653 |a Information theory 
653 |a Messages 
653 |a Artificial intelligence 
653 |a Programming languages 
653 |a Principles 
700 1 |a Abrahão, Felipe S 
700 1 |a Luan C S M Ozelim 
773 0 |t arXiv.org  |g (Dec 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3054659282/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2405.07803