LLM+Reasoning+Planning for supporting incomplete user queries in presence of APIs

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Oct 11, 2024), p. n/a
Hlavní autor: Agarwal, Sudhir
Další autoři: Sreepathy, Anu, Alonso, David H, Lamba, Prarit
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3058332353
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3058332353 
045 0 |b d20241011 
100 1 |a Agarwal, Sudhir 
245 1 |a LLM+Reasoning+Planning for supporting incomplete user queries in presence of APIs 
260 |b Cornell University Library, arXiv.org  |c Oct 11, 2024 
513 |a Working Paper 
520 3 |a Recent availability of Large Language Models (LLMs) has led to the development of numerous LLM-based approaches aimed at providing natural language interfaces for various end-user tasks. These end-user tasks in turn can typically be accomplished by orchestrating a given set of APIs. In practice, natural language task requests (user queries) are often incomplete, i.e., they may not contain all the information required by the APIs. While LLMs excel at natural language processing (NLP) tasks, they frequently hallucinate on missing information or struggle with orchestrating the APIs. The key idea behind our proposed approach is to leverage logical reasoning and classical AI planning along with an LLM for accurately answering user queries including identification and gathering of any missing information in these queries. Our approach uses an LLM and ASP (Answer Set Programming) solver to translate a user query to a representation in Planning Domain Definition Language (PDDL) via an intermediate representation in ASP. We introduce a special API "get_info_api" for gathering missing information. We model all the APIs as PDDL actions in a way that supports dataflow between the APIs. Our approach then uses a classical AI planner to generate an orchestration of API calls (including calls to get_info_api) to answer the user query. Our evaluation results show that our approach significantly outperforms a pure LLM based approach by achieving over 95\% success rate in most cases on a dataset containing complete and incomplete single goal and multi-goal queries where the multi-goal queries may or may not require dataflow among the APIs. 
653 |a Language 
653 |a Application programming interface 
653 |a Declarative programming 
653 |a Large language models 
653 |a Queries 
653 |a Natural language processing 
653 |a Planning 
653 |a Mathematical programming 
653 |a Cognition & reasoning 
653 |a Representations 
653 |a Reasoning 
653 |a Natural language 
700 1 |a Sreepathy, Anu 
700 1 |a Alonso, David H 
700 1 |a Lamba, Prarit 
773 0 |t arXiv.org  |g (Oct 11, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3058332353/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2405.12433