Terahertz Nondestructive Measurement of Heat Radiation Performance of Thermal Barrier Coatings Based on Hybrid Artificial Neural Network

Uloženo v:
Podrobná bibliografie
Vydáno v:Coatings vol. 14, no. 5 (2024), p. 647
Hlavní autor: Zhou, Xu
Další autoři: Yin, Changdong, Wu, Yiwen, Liu, Houli, Zhou, Haiting, Xu, Shuheng, Xu, Jianfei, Ye, Dongdong
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3059416586
003 UK-CbPIL
022 |a 2079-6412 
024 7 |a 10.3390/coatings14050647  |2 doi 
035 |a 3059416586 
045 2 |b d20240101  |b d20241231 
084 |a 231445  |2 nlm 
100 1 |a Zhou, Xu  |u School of Electrical and Automation, Wuhu Institute of Technology, Wuhu 241006, China; <email>101043@whit.edu.cn</email> 
245 1 |a Terahertz Nondestructive Measurement of Heat Radiation Performance of Thermal Barrier Coatings Based on Hybrid Artificial Neural Network 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Effective control of the micro- and nanostructure of thermal barrier coatings is essential to enhance the thermal radiation performance of the coating, which helps to determine the remaining service life of the coating. This paper proposed a method to measure the radiation properties of thermal barrier coatings by terahertz nondestructive testing technique, using APS-prepared thermal barrier coatings as the object of study. Radiative properties were a comprehensive set of properties characterized by the diffuse reflectance, transmittance, and absorptance of the thermal barrier coating. The coating data in actual service were obtained by scanning electron microscopy and metallographic experiments, and the data were used as the simulation model critical value. The terahertz time-domain simulation data of coatings with different microstructural features were obtained using the finite-different time-domain (FDTD) method. In simulating the real test signals, white noise with a signal-to-noise ratio of 20 dB was added, and fast Fourier transform (FFT), short-time Fourier transform (STFT), and wavelet transform (WT) were used to reduce the noise and compare their noise reduction effects. Different machine learning methods were used to build the model, including support vector machine algorithm (SVM) and k-nearest neighbor algorithm (KNN). The principal component algorithm (PCA) was used to reduce the dimensionality of terahertz time-domain data, and the SVM algorithm and KNN algorithm were optimized using the particle swarm optimization algorithm (PSO) and the ant colony optimization algorithm (ACO), respectively, to improve the robustness of the system. The K-fold cross-validation method was used to construct the model to improve the adaptability of the model. It could be clearly seen that the novel hybrid PCA-ACO-SVM model had superior prediction performance. Finally, this work proposed a novel, convenient, nondestructive, online, safe and highly accurate method for measuring the radiation performance of thermal barrier coatings, which could be used for the judgment of the service life of thermal barrier coatings. 
653 |a Measurement methods 
653 |a Particle swarm optimization 
653 |a Accuracy 
653 |a Nondestructive testing 
653 |a Coatings 
653 |a Simulation models 
653 |a Fast Fourier transformations 
653 |a Artificial neural networks 
653 |a Aviation 
653 |a White noise 
653 |a Time domain analysis 
653 |a Data processing 
653 |a Noise levels 
653 |a Service life 
653 |a Absorptance 
653 |a Machine learning 
653 |a Ant colony optimization 
653 |a Wavelet transforms 
653 |a Radiation 
653 |a Computer simulation 
653 |a Efficiency 
653 |a Big Data 
653 |a Simulation 
653 |a Research methodology 
653 |a Artificial intelligence 
653 |a Principal components analysis 
653 |a Support vector machines 
653 |a Thermal radiation 
653 |a Thermal barriers 
653 |a Noise reduction 
653 |a Algorithms 
653 |a Absorptivity 
653 |a Experimental methods 
653 |a Signal to noise ratio 
653 |a K-nearest neighbors algorithm 
700 1 |a Yin, Changdong  |u School of Electrical and Automation, Wuhu Institute of Technology, Wuhu 241006, China; <email>101043@whit.edu.cn</email> 
700 1 |a Wu, Yiwen  |u Institute of Intelligent Manufacturing, Wuhu Institute of Technology, Wuhu 241006, China; <email>101430@whit.edu.cn</email> 
700 1 |a Liu, Houli  |u Institute of Intelligent Manufacturing, Wuhu Institute of Technology, Wuhu 241006, China; <email>101430@whit.edu.cn</email> 
700 1 |a Zhou, Haiting  |u Department of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China; <email>zhouhaiting@cjlu.edu.cn</email> 
700 1 |a Xu, Shuheng  |u School of Artificial Intelligence, Anhui Polytechnic University, Wuhu 241000, China; <email>2220110152@stu.ahpu.edu.cn</email> 
700 1 |a Xu, Jianfei  |u Department of Automotive Engineering and Intelligent Manufacturing, Wanjiang College of Anhui Normal University, Wuhu 241008, China; <email>wuhuuniversityxjf@163.com</email> 
700 1 |a Ye, Dongdong  |u School of Artificial Intelligence, Anhui Polytechnic University, Wuhu 241000, China; <email>2220110152@stu.ahpu.edu.cn</email>; Huzhou Key Laboratory of Terahertz Integrated Circuits and Systems, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China; Anhui Polytechnic University Industrial Innovation Technology Research Co., Ltd., Wuhu 241000, China 
773 0 |t Coatings  |g vol. 14, no. 5 (2024), p. 647 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3059416586/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3059416586/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3059416586/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch