Applying Machine Learning to Earthquake Engineering: A Scientometric Analysis of World Research

保存先:
書誌詳細
出版年:Buildings vol. 14, no. 5 (2024), p. 1393
第一著者: Hu, Yi
その他の著者: Wang, Wentao, Li, Lei, Wang, Fangjun
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3059506099
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings14051393  |2 doi 
035 |a 3059506099 
045 2 |b d20240101  |b d20241231 
084 |a 231437  |2 nlm 
100 1 |a Hu, Yi  |u China Minmetals Corporation, Beijing 100000, China; <email>huyi@mcc17.cn</email> (Y.H.); <email>CamelW3@163.com</email> (F.W.); China MCC17 Group Co., Ltd., Maanshan 243000, China 
245 1 |a Applying Machine Learning to Earthquake Engineering: A Scientometric Analysis of World Research 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Machine Learning (ML) has developed rapidly in recent years, achieving exciting advancements in applications such as data mining, computer vision, natural language processing, data feature extraction, and prediction. ML methods are increasingly being utilized in various aspects of seismic engineering, such as predicting the performance of various construction materials, monitoring the health of building structures or components, forecasting their seismic resistance, predicting potential earthquakes or aftershocks, and evaluating the residual performance of post-earthquake damaged buildings. This study conducts a scientometric-based review on the application of machine learning in seismic engineering. The Scopus database was selected for the data search and retrieval. During the data analysis, the sources of publications relevant to machine learning applications in seismic engineering, relevant keywords, influential authors based on publication count, and significant articles based on citation count were identified. The sources, keywords, and publications in the literature were analyzed and scientifically visualized using the VOSviewer software tool. The analysis results will help researchers understand the trending and latest research topics in the related field, facilitate collaboration among researchers, and promote the exchange of innovative ideas and methods. 
653 |a Earthquakes 
653 |a Feature extraction 
653 |a Collaboration 
653 |a Performance evaluation 
653 |a Performance prediction 
653 |a Concrete 
653 |a Data search 
653 |a Earthquake resistance 
653 |a Citation analysis 
653 |a Machine learning 
653 |a Computer vision 
653 |a Earthquake prediction 
653 |a Data mining 
653 |a Keywords 
653 |a Learning algorithms 
653 |a Bibliographic coupling 
653 |a Structural health monitoring 
653 |a Data processing 
653 |a Data analysis 
653 |a Computers 
653 |a Seismic activity 
653 |a Scientometrics 
653 |a Materials science 
653 |a Bibliometrics 
653 |a Artificial intelligence 
653 |a Earthquake construction 
653 |a Earthquake damage 
653 |a Seismic engineering 
653 |a Algorithms 
653 |a Natural language processing 
653 |a Earthquake engineering 
653 |a Construction materials 
653 |a Information technology 
653 |a Software 
700 1 |a Wang, Wentao  |u School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China 
700 1 |a Li, Lei  |u School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China 
700 1 |a Wang, Fangjun  |u China Minmetals Corporation, Beijing 100000, China; <email>huyi@mcc17.cn</email> (Y.H.); <email>CamelW3@163.com</email> (F.W.); China MCC17 Group Co., Ltd., Maanshan 243000, China 
773 0 |t Buildings  |g vol. 14, no. 5 (2024), p. 1393 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3059506099/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3059506099/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3059506099/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch