Data analysis and preprocessing techniques for air quality prediction: a survey

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Stochastic Environmental Research and Risk Assessment vol. 38, no. 6 (Jun 2024), p. 2095
מחבר ראשי: Yu, Chengqing
מחברים אחרים: Tan, Jing, Cheng, Yihan, Mi, Xiwei
יצא לאור:
Springer Nature B.V.
נושאים:
גישה מקוונת:Citation/Abstract
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3059654952
003 UK-CbPIL
022 |a 1436-3240 
022 |a 1436-3259 
022 |a 0931-1955 
024 7 |a 10.1007/s00477-024-02693-4  |2 doi 
035 |a 3059654952 
045 2 |b d20240601  |b d20240630 
084 |a 65704  |2 nlm 
100 1 |a Yu, Chengqing  |u University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
245 1 |a Data analysis and preprocessing techniques for air quality prediction: a survey 
260 |b Springer Nature B.V.  |c Jun 2024 
513 |a Journal Article 
520 3 |a Air quality prediction technology can provide effective technical means for environmental governance. In recent years, due to the strong nonlinearity of data, there has been extensive research on data analysis and preprocessing techniques. This paper aims to comprehensively summarize and analyze the methods used in air quality forecasting, specifically focusing on four categories: data decomposition, dimensionality reduction, data correction, and spatial interpolation. Each method's purpose, characteristics, improvements, and implementation details are described in detail. The evaluation of data preprocessing methods is based on popularity, accuracy improvements, time consumption, maturity, and implementation difficulty. Among the existing methods, data decomposition and feature selection are commonly used and well-developed. However, outlier detection and spatial interpolation have limited applications and require further research. Furthermore, this paper discusses current challenges in applying these methods and future development trends, providing a valuable reference for future research. 
653 |a Data processing 
653 |a Outliers (statistics) 
653 |a Data analysis 
653 |a Preprocessing 
653 |a Spatial data 
653 |a Interpolation 
653 |a Air quality 
653 |a Nonlinear systems 
653 |a Decomposition 
653 |a Pollutants 
653 |a Forecasting 
653 |a Environmental research 
653 |a Feature selection 
653 |a Air pollution 
653 |a Outdoor air quality 
653 |a Cognition & reasoning 
653 |a Risk assessment 
653 |a Emergency communications systems 
653 |a Missing data 
653 |a Algorithms 
653 |a Nitrogen dioxide 
653 |a Environmental governance 
653 |a Economic 
700 1 |a Tan, Jing  |u Central South University, School of Traffic and Transportation Engineering, Changsha, China (GRID:grid.216417.7) (ISNI:0000 0001 0379 7164) 
700 1 |a Cheng, Yihan  |u Beijing Jiaotong University, School of Traffic and Transportation, Beijing, China (GRID:grid.181531.f) (ISNI:0000 0004 1789 9622) 
700 1 |a Mi, Xiwei  |u Beijing Jiaotong University, School of Traffic and Transportation, Beijing, China (GRID:grid.181531.f) (ISNI:0000 0004 1789 9622) 
773 0 |t Stochastic Environmental Research and Risk Assessment  |g vol. 38, no. 6 (Jun 2024), p. 2095 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3059654952/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3059654952/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch